import gradio as gr import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"IThinkUPC/SQLGenerator-AI" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def greet(name): return "Hello " + name + "!!" def make_inference(prompt): batch = tokenizer(f"### Question:\n{prompt}: \n\n### Query", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) #iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface = gr.Interface(fn=make_inference, inputs="text", outputs="text") iface.launch()