File size: 11,933 Bytes
4dc5014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd2368d
 
 
 
 
 
97bb9d9
4dc5014
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai.vision.all import *
import PIL
import torchvision.transforms as transforms

##Extras por si pudiera reconstruir la imagen en HF tambi茅n
import numpy as np
import os
import cv2

def extract_subimages(image : np.ndarray, wwidth, wheight, overlap_fraction):
    """
    Extracts subimages of the input image using a moving window of size (wwidth, wheight)
    with the specified overlap fraction. Returns a tuple (subimages, coords) where subimages
    is a list of subimages and coords is a list of tuples (x, y) indicating the top left corner
    coordinates of each subimage in the input image.
    """
    subimages = []
    coords = []
    height, width, channels = image.shape
    if channels > 3:
      image = image[:,:,0:3]
      channels = 3
    overlap = int(max(0, min(overlap_fraction, 1)) * min(wwidth, wheight))
    y = 0
    while y + wheight <= height:
        x = 0
        while x + wwidth <= width:
            subimage = image[y:y+wheight, x:x+wwidth, :]
            subimages.append(subimage)
            coords.append((x, y))
            x += wwidth - overlap
        y += wheight - overlap
    if y < height:
        y = height - wheight
        x = 0
        while x + wwidth <= width:
            subimage = image[y:y+wheight, x:x+wwidth, :]
            subimages.append(subimage)
            coords.append((x, y))
            x += wwidth - overlap
        if x < width:
            x = width - wwidth
            subimage = image[y:y+wheight, x:x+wwidth, :]
            subimages.append(subimage)
            coords.append((x, y))
    if x < width:
        x = width - wwidth
        y = 0
        while y + wheight <= height:
            subimage = image[y:y+wheight, x:x+wwidth, :]
            subimages.append(subimage)
            coords.append((x, y))
            y += wheight - overlap
        if y < height:
            y = height - wheight
            subimage = image[y:y+wheight, x:x+wwidth, :]
            subimages.append(subimage)
            coords.append((x, y))
    return subimages, coords

# Si no hay archivos tif (labels) no se tratan, no hace falta considerarlo
def generate_and_save_subimages(path, output_dir_images, output_dir_labels = None):
  if output_dir_labels:
    if not os.path.exists(output_dir_labels):
        os.makedirs(output_dir_labels)

  if not os.path.exists(output_dir_images):
      os.makedirs(output_dir_images)

  for filename in os.listdir(path):
      if filename.endswith(".png") or filename.endswith(".tif"):
          filepath = os.path.join(path, filename)
          image = cv2.imread(filepath)
          subimages, coords = extract_subimages(image, 400, 400, 0.66)
          for i, subimage in enumerate(subimages):
              if filename.endswith(".png"):
                  output_filename = os.path.join(output_dir_images, f"{filename.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.png")
                  cv2.imwrite(output_filename, subimage)
              else:
                  if output_dir_labels:
                    output_filename = os.path.join(output_dir_labels, f"{filename.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.tif")
                    cv2.imwrite(output_filename, subimage)

def generate_and_save_subimages_nolabel(path, output_dir_images, olverlap=0.0, imagesformat="png", split_in_dirs=True):
  for entry in os.scandir(path):
    if entry.is_file() and entry.name.lower().endswith(imagesformat):
      filepath = entry.path
      gss_single(filepath, output_dir_images, olverlap, imagesformat, split_in_dirs)

def gss_single(filepath, output_dir_images, olverlap=0.0, imagesformat="png", split_in_dirs=True):
      image = cv2.imread(filepath)

      if split_in_dirs:
        dir_this_image = Path(output_dir_images)/filepath.rsplit('.', 1)[0]
        os.makedirs(dir_this_image, exist_ok=True)
      else:
        os.makedirs(output_dir_images, exist_ok=True)

      subimages, coords = extract_subimages(image, 400, 400, olverlap)
      for i, subimage in enumerate(subimages):
        if split_in_dirs:
          output_filename = os.path.join(dir_this_image, f"{filepath.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.png")
        else:
          output_filename = os.path.join(output_dir_images, f"{filepath.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.png")
        cv2.imwrite(output_filename, subimage)

def split_windows_in_folders(input_images_folder, output_images_folder):
  for filename in os.listdir(input_images_folder):
    dir_this_image = Path(output_images_folder)/filename.rsplit('.', 1)[0]
    os.makedirs(dir_this_image, exist_ok=True)
    if filename.endswith(".png"):
      print(str(dir_this_image))
      filepath = os.path.join(path, filename)
      image = cv2.imread(filepath)
      subimages, coords = extract_subimages(image, 400, 400, 0)
      for i, subimage in enumerate(subimages):
          output_filename = os.path.join(dir_this_image, f"{filename.rsplit('.', 1)[0]}_{coords[i][0]}_{coords[i][1]}.png")
          cv2.imwrite(output_filename, subimage)


def subimages_from_directory(directorio):
  # Define el directorio a recorrer
  directorio = directorio

  # Define la expresi贸n regular para buscar los n煤meros X e Y en el nombre de archivo
  patron = re.compile(r"(.*)_(\d+)_(\d+)\.(png|jpg|tif)")

  windowlist = []
  coords = []

  # Recorre el directorio en busca de im谩genes
  for filename in os.listdir(directorio):
    match = patron.search(filename)
    if match:
        origname = match.group(1)
        x = int(match.group(2))
        y = int(match.group(3))
        #print(f"El archivo {filename} tiene los n煤meros X={x} e Y={y}")
        img = cv2.imread(os.path.join(directorio, filename))
        windowlist.append(img)
        coords.append((x, y))

  # Ordena las listas por coordenadas X e Y
  windowlist, coords = zip(*sorted(zip(windowlist, coords), key=lambda pair: (pair[1][0], pair[1][1])))
  wh, ww, chan = windowlist[0].shape
  origsize = tuple(elem1 + elem2 for elem1, elem2 in zip(coords[-1], (wh,ww)))

  return windowlist, coords, wh, ww, chan, origsize

def subimages_onlypath(directorio):
  # Define el directorio a recorrer
  directorio = directorio
  pathlist = []

  patron = re.compile(r"(.*)_(\d+)_(\d+)\.(png|jpg|tif)")

  for filename in os.listdir(directorio):
    match = patron.search(filename)
    if match:
        pathlist.append(os.path.join(directorio, filename))

  return pathlist

def ReconstructFromMW(windowlist, coords, wh, ww, chan, origsize):
  canvas = np.zeros((origsize[1], origsize[0], chan), dtype=np.uint8)
  for idx, window in enumerate(windowlist):
    canvas[coords[idx][1]:coords[idx][1]+wh, coords[idx][0]:coords[idx][0]+ww, :] = window
  return canvas

def get_list_tp(path):
  list_to_process = []  # Inicializar la lista que contendr谩 los nombres de los subdirectorios
  list_names = []
  # Recorrer los elementos del directorio
  for element in os.scandir(path):
      # Verificar si el elemento es un directorio
      if element.is_dir():
          # Agregar el nombre del subdirectorio a la lista
          windowlist, coords, wh, ww, chan, origsize = subimages_from_directory(element)
          list_to_process.append(ReconstructFromMW(windowlist, coords, wh, ww, chan, origsize))
          list_names.append(element.name)
  return list_to_process, list_names

def get_paths_tp(path):
  list_to_process = []  # Inicializar la lista que contendr谩 los nombres de los subdirectorios
  # Recorrer los elementos del directorio
  for element in os.scandir(path):
      # Verificar si el elemento es un directorio
      if element.is_dir():
          # Agregar el nombre del subdirectorio a la lista
          list_to_process.append(subimages_onlypath(element))
  return list_to_process

def process_multifolder(process_folders, result_folder):
  for folder in process_folders:
    folname = os.path.basename(os.path.dirname(folder[0]))
    destname = Path(result_folder)/folname
    os.makedirs(destname, exist_ok=True)
    for subimagepath in folder:
      img = PIL.Image.open(subimagepath)
      image = transforms.Resize((400,400))(img)
      tensor = transform_image(image=image)
      with torch.no_grad():
          outputs = model(tensor)
      outputs = torch.argmax(outputs,1)
      mask = np.array(outputs.cpu())
      mask[mask==1]=255
      mask=np.reshape(mask,(400,400))
      mask_img = Image.fromarray(mask.astype('uint8'))

      filename = os.path.basename(subimagepath)
      new_image_path = os.path.join(result_folder, folname, filename)
      mask_img.save(new_image_path)

def recombine_windows(results_folder_w, result_f_rec):
  imgs, nombres = get_list_tp(results_folder_w)
  os.makedirs(result_f_rec, exist_ok=True)

  for idx, image in enumerate(imgs):
    img = Image.fromarray(image)
    new_image_path = os.path.join(result_f_rec, nombres[idx] + '.tif')
    img.save(new_image_path, compression='tiff_lzw')
  return new_image_path

def process_single_image(single_image_path, base_f, pro_f, rsw_f, rsd_f):
  gss_single(single_image_path, pro_f, 0, "tif", True)
  process_multifolder(get_paths_tp(pro_f),rsw_f)
  pt = recombine_windows(rsw_f,rsd_f)
  shutil.rmtree(pro_f)
  shutil.rmtree(rsw_f)
  #copiar_info_georref(single_image_path, pt)
  return pt

# from osgeo import gdal, osr

# def copiar_info_georref(entrada, salida):
#     try:
#         # Abrir el archivo GeoTIFF original
#         original_dataset = gdal.Open(entrada)

#         # Obtener la informaci贸n de georreferenciaci贸n del archivo original
#         original_projection = original_dataset.GetProjection()
#         original_geotransform = original_dataset.GetGeoTransform()

#         # Abrir la imagen resultado
#         result_dataset = gdal.Open(salida, gdal.GA_Update)

#         # Copiar la informaci贸n de georreferenciaci贸n del archivo original a la imagen resultado
#         result_dataset.SetProjection(original_projection)
#         result_dataset.SetGeoTransform(original_geotransform)

#         # Cerrar los archivos
#         original_dataset = None
#         result_dataset = None

#     except Exception as e:
#         print("Error: ", e)

###FIN de extras



#repo_id = "Ignaciobfp/segmentacion-dron-marras"
#learner = from_pretrained_fastai(repo_id)

device = torch.device("cpu") 
#model = learner.model
model = torch.jit.load("modelo_marras.pth")
model = model.cpu()

def transform_image(image):
    my_transforms = transforms.Compose([transforms.ToTensor(),
                                        transforms.Normalize(
                                            [0.485, 0.456, 0.406],
                                            [0.229, 0.224, 0.225])])
    image_aux = image
    return my_transforms(image_aux).unsqueeze(0).to(device)


# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
def predict(img):
    img_pil = PIL.Image.fromarray(img, 'RGB')
    image = transforms.Resize((400,400))(img_pil)
    tensor = transform_image(image=image)
    model.to(device)
    with torch.no_grad():
        outputs = model(tensor)
    outputs = torch.argmax(outputs,1)
    mask = np.array(outputs.cpu())
    mask[mask==1]=255
    mask=np.reshape(mask,(400,400))
    return Image.fromarray(mask.astype('uint8'))

def predict_full(img):
    # Obtener la ruta actual
    ruta_actual = Path(".")
    
    # Imprimir la ruta actual en la consola
    print(f"La ruta actual es: {ruta_actual.resolve()}")

    single_image_path = "/home/user/app/tmp.tif"
    base_f = "."
    pro_f = "processing"
    rsw_f = "results_windows"
    rsd_f = "results_together"
    destpath = process_single_image(single_image_path, base_f, pro_f, rsw_f, rsd_f)
    im = Image.open(destpath)
    return im
    
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict_full, inputs=gr.inputs.Image(), outputs=gr.outputs.Image(type="pil")).launch(share=False)