File size: 6,198 Bytes
81f0a03
 
 
9fc1785
81f0a03
 
 
 
 
 
 
 
9fc1785
81f0a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc1785
81f0a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc1785
81f0a03
 
 
9fc1785
81f0a03
 
 
 
 
 
 
 
 
 
 
 
 
9fc1785
81f0a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr
import numpy as np

from resources.data import coding_topics_list, fixed_messages
from utils.ui import add_candidate_message, add_interviewer_message


def get_codding_ui(llm, tts, stt, default_audio_params, audio_output):
    with gr.Tab("Coding", render=False) as coding_tab:
        chat_history = gr.State([])
        previous_code = gr.State("")
        started_coding = gr.State(False)
        interview_type = gr.State("coding")
        with gr.Accordion("Settings") as init_acc:
            with gr.Row():
                with gr.Column():
                    gr.Markdown("##### Problem settings")
                    with gr.Row():
                        gr.Markdown("Difficulty")
                        difficulty_select = gr.Dropdown(
                            label="Select difficulty",
                            choices=["Easy", "Medium", "Hard"],
                            value="Medium",
                            container=False,
                            allow_custom_value=True,
                        )
                    with gr.Row():
                        gr.Markdown("Topic (can type custom value)")
                        topic_select = gr.Dropdown(
                            label="Select topic", choices=coding_topics_list, value="Arrays", container=False, allow_custom_value=True
                        )
                with gr.Column(scale=2):
                    requirements = gr.Textbox(label="Requirements", placeholder="Specify additional requirements", lines=5)
                    start_btn = gr.Button("Generate a problem")

        with gr.Accordion("Problem statement", open=True) as problem_acc:
            description = gr.Markdown()
        with gr.Accordion("Solution", open=False) as solution_acc:
            with gr.Row() as content:
                with gr.Column(scale=2):
                    code = gr.Code(
                        label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
                        language="python",
                        lines=46,
                    )
                with gr.Column(scale=1):
                    end_btn = gr.Button("Finish the interview", interactive=False)
                    chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False)
                    message = gr.Textbox(
                        label="Message",
                        placeholder="Your message will appear here",
                        show_label=False,
                        lines=3,
                        max_lines=3,
                        interactive=False,
                    )
                    send_btn = gr.Button("Send", interactive=False)
                    audio_input = gr.Audio(interactive=False, **default_audio_params)

                    audio_buffer = gr.State(np.array([], dtype=np.int16))
                    transcript = gr.State({"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""})

        with gr.Accordion("Feedback", open=True) as feedback_acc:
            feedback = gr.Markdown()

        start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
            fn=lambda: True, outputs=[started_coding]
        ).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
            fn=lambda: (gr.update(open=False), gr.update(interactive=False)), outputs=[init_acc, start_btn]
        ).success(
            fn=llm.get_problem,
            inputs=[requirements, difficulty_select, topic_select, interview_type],
            outputs=[description],
            scroll_to_output=True,
        ).success(
            fn=llm.init_bot, inputs=[description, interview_type], outputs=[chat_history]
        ).success(
            fn=lambda: (gr.update(open=True), gr.update(interactive=True), gr.update(interactive=True)),
            outputs=[solution_acc, end_btn, audio_input],
        )

        end_btn.click(
            fn=add_interviewer_message(fixed_messages["end"]),
            inputs=[chat],
            outputs=[chat],
        ).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
            fn=lambda: (gr.update(open=False), gr.update(interactive=False), gr.update(open=False), gr.update(interactive=False)),
            outputs=[solution_acc, end_btn, problem_acc, audio_input],
        ).success(
            fn=llm.end_interview, inputs=[description, chat_history, interview_type], outputs=[feedback]
        )

        send_btn.click(fn=add_candidate_message, inputs=[message, chat], outputs=[chat]).success(
            fn=lambda: None, outputs=[message]
        ).success(
            fn=llm.send_request,
            inputs=[code, previous_code, chat_history, chat],
            outputs=[chat_history, chat, previous_code],
        ).success(
            fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
        ).success(
            fn=lambda: gr.update(interactive=False), outputs=[send_btn]
        ).success(
            fn=lambda: np.array([], dtype=np.int16), outputs=[audio_buffer]
        ).success(
            fn=lambda: {"words": [], "not_confirmed": 0, "last_cutoff": 0, "text": ""}, outputs=[transcript]
        )

        if stt.streaming:
            audio_input.stream(
                stt.process_audio_chunk,
                inputs=[audio_input, audio_buffer, transcript],
                outputs=[transcript, audio_buffer, message],
                show_progress="hidden",
            )
            audio_input.stop_recording(fn=lambda: gr.update(interactive=True), outputs=[send_btn])
        else:
            audio_input.stop_recording(fn=stt.speech_to_text_full, inputs=[audio_input], outputs=[message]).success(
                fn=lambda: gr.update(interactive=True), outputs=[send_btn]
            ).success(fn=lambda: None, outputs=[audio_input])

        coding_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat, started_coding], outputs=[chat]).success(
            fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
        )

    return coding_tab