Spaces:
Sleeping
Sleeping
File size: 3,711 Bytes
df25732 1a47458 a82cf01 a10bc68 c57cd9a df25732 891f3b9 df25732 a10bc68 df25732 a10bc68 c57cd9a a10bc68 f6e34f2 891f3b9 a10bc68 c57cd9a df25732 a10bc68 c8e8be4 891f3b9 df25732 a10bc68 c57cd9a a10bc68 f6e34f2 c57cd9a c8e8be4 df25732 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import gradio as gr
from llm import end_interview, get_problem, send_request
from options import languages_list, models, topics_list
def hide_settings():
init_acc = gr.Accordion("Settings", open=False)
start_btn = gr.Button("Generate a problem", interactive=False)
solution_acc = gr.Accordion("Solution", open=True)
return init_acc, start_btn, solution_acc
def hide_solution():
solution_acc = gr.Accordion("Solution", open=False)
end_btn = gr.Button("Finish the interview", interactive=False)
problem_acc = gr.Accordion("Problem statement", open=False)
return solution_acc, end_btn, problem_acc
with gr.Blocks() as demo:
gr.Markdown("Your coding interview practice AI assistant!")
# TODO: add instructions tab
# TODO: add other types of interviews (e.g. system design, ML design, behavioral, etc.)
with gr.Tab("Coding"):
chat_history = gr.State([])
previous_code = gr.State("")
client = gr.State(None)
with gr.Accordion("Settings") as init_acc:
with gr.Row():
with gr.Column():
gr.Markdown("Difficulty")
difficulty_select = gr.Dropdown(
label="Select difficulty", choices=["Easy", "Medium", "Hard"], value="Medium", container=False
)
gr.Markdown("Topic")
topic_select = gr.Dropdown(
label="Select topic", choices=topics_list, value="Arrays", container=False, allow_custom_value=True
)
gr.Markdown("Select LLM model to use")
model_select = gr.Dropdown(label="Select model", choices=models, value="gpt-3.5-turbo", container=False)
with gr.Column():
requirements = gr.Textbox(
label="Requirements", placeholder="Specify requirements: topic, difficulty, language, etc.", lines=5
)
start_btn = gr.Button("Generate a problem")
# TODO: select LLM model
with gr.Accordion("Problem statement", open=True) as problem_acc:
description = gr.Markdown()
with gr.Accordion("Solution", open=False) as solution_acc:
with gr.Row() as content:
with gr.Column(scale=2):
language_select = gr.Dropdown(
label="Select language", choices=languages_list, value="python", container=False, interactive=True
)
code = gr.Code(label="Solution", language=language_select.value, lines=20)
message = gr.Textbox(label="Message", lines=1)
# TODO: add voice input and output
with gr.Column(scale=1):
chat = gr.Chatbot(label="Chat history")
end_btn = gr.Button("Finish the interview")
with gr.Accordion("Feedback", open=True) as feedback_acc:
feedback = gr.Markdown()
start_btn.click(
fn=get_problem,
inputs=[requirements, difficulty_select, topic_select, model_select],
outputs=[description, chat_history],
scroll_to_output=True,
).then(fn=hide_settings, inputs=None, outputs=[init_acc, start_btn, solution_acc])
message.submit(
fn=send_request,
inputs=[code, previous_code, message, chat_history, chat, model_select],
outputs=[chat_history, chat, message, previous_code],
)
end_btn.click(fn=end_interview, inputs=[chat_history, model_select], outputs=feedback).then(
fn=hide_solution, inputs=None, outputs=[solution_acc, end_btn, problem_acc]
)
demo.launch()
|