File size: 5,726 Bytes
df25732
 
87ae702
a82cf01
a10bc68
c57cd9a
 
 
 
 
87ae702
 
 
 
 
855dfb9
87ae702
 
 
 
 
 
 
 
 
 
 
c57cd9a
 
 
 
 
 
87ae702
 
 
 
855dfb9
87ae702
 
 
 
 
 
 
 
 
c57cd9a
 
df25732
 
891f3b9
 
 
df25732
 
 
a10bc68
df25732
a10bc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c57cd9a
a10bc68
f6e34f2
891f3b9
a10bc68
c57cd9a
df25732
 
a10bc68
 
 
87ae702
df25732
87ae702
df25732
87ae702
 
 
855dfb9
87ae702
 
 
 
 
 
 
 
df25732
 
 
a10bc68
 
 
 
 
87ae702
c57cd9a
87ae702
a10bc68
 
 
f6e34f2
c57cd9a
 
87ae702
c57cd9a
c8e8be4
87ae702
 
f913a0b
 
 
 
87ae702
 
 
 
 
 
df25732
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr

from llm import end_interview, get_problem, read_last_message, send_request, transcribe_audio
from options import languages_list, models, topics_list


def hide_settings():
    init_acc = gr.Accordion("Settings", open=False)
    start_btn = gr.Button("Generate a problem", interactive=False)
    solution_acc = gr.Accordion("Solution", open=True)
    end_btn = gr.Button("Finish the interview", interactive=True)
    send_btn = gr.Button("Send", interactive=True)
    audio_input = gr.Audio(
        label="Record audio",
        sources=["microphone"],
        type="numpy",
        waveform_options={"show_controls": False},
        interactive=True,
        editable=False,
    )
    chat = [
        (
            None,
            "Welcome to the interview! Please take a moment to read the problem statement. Then you can share you initial thoughts and ask any questions you may have. Good luck!",
        )
    ]
    return init_acc, start_btn, solution_acc, end_btn, send_btn, audio_input, chat


def hide_solution():
    solution_acc = gr.Accordion("Solution", open=False)
    end_btn = gr.Button("Finish the interview", interactive=False)
    problem_acc = gr.Accordion("Problem statement", open=False)
    send_btn = gr.Button("Send", interactive=False)
    audio_input = gr.Audio(
        label="Record audio",
        sources=["microphone"],
        type="numpy",
        waveform_options={"show_controls": False},
        interactive=False,
        editable=False,
    )
    return solution_acc, end_btn, problem_acc, send_btn, audio_input


def return_none():
    return None


with gr.Blocks() as demo:
    gr.Markdown("Your coding interview practice AI assistant!")
    # TODO: add instructions tab
    # TODO: add other types of interviews (e.g. system design, ML design, behavioral, etc.)

    with gr.Tab("Coding"):
        chat_history = gr.State([])
        previous_code = gr.State("")
        client = gr.State(None)
        with gr.Accordion("Settings") as init_acc:
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Difficulty")
                    difficulty_select = gr.Dropdown(
                        label="Select difficulty", choices=["Easy", "Medium", "Hard"], value="Medium", container=False
                    )

                    gr.Markdown("Topic")
                    topic_select = gr.Dropdown(
                        label="Select topic", choices=topics_list, value="Arrays", container=False, allow_custom_value=True
                    )

                    gr.Markdown("Select LLM model to use")
                    model_select = gr.Dropdown(label="Select model", choices=models, value="gpt-3.5-turbo", container=False)
                with gr.Column():
                    requirements = gr.Textbox(
                        label="Requirements", placeholder="Specify requirements: topic, difficulty, language, etc.", lines=5
                    )
                    start_btn = gr.Button("Generate a problem")

            # TODO: select LLM model
        with gr.Accordion("Problem statement", open=True) as problem_acc:
            description = gr.Markdown()
        with gr.Accordion("Solution", open=False) as solution_acc:
            with gr.Row() as content:
                with gr.Column(scale=2):
                    language_select = gr.Dropdown(
                        label="Select language", choices=languages_list, value="python", container=False, interactive=True
                    )
                    code = gr.Code(label="Solution", language=language_select.value, lines=35)
                with gr.Column(scale=1):
                    end_btn = gr.Button("Finish the interview", interactive=False)
                    chat = gr.Chatbot(label="Chat history")
                    audio_input = gr.Audio(
                        label="Record audio",
                        sources=["microphone"],
                        type="numpy",
                        waveform_options={"show_controls": False},
                        interactive=False,
                        editable=False,
                    )
                    audio_output = gr.Audio(label="Play audio", autoplay=True, visible=False)
                    message = gr.Textbox(label="Message", lines=3)
                    send_btn = gr.Button("Send", interactive=False)

        with gr.Accordion("Feedback", open=True) as feedback_acc:
            feedback = gr.Markdown()

    start_btn.click(
        fn=get_problem,
        inputs=[requirements, difficulty_select, topic_select, model_select],
        outputs=[description, chat_history],
        scroll_to_output=True,
    ).then(fn=hide_settings, inputs=None, outputs=[init_acc, start_btn, solution_acc, end_btn, send_btn, audio_input, chat])

    send_btn.click(
        fn=send_request,
        inputs=[code, previous_code, message, chat_history, chat, model_select],
        outputs=[chat_history, chat, message, previous_code],
    )

    end_btn.click(fn=end_interview, inputs=[chat_history, model_select], outputs=feedback).then(
        fn=hide_solution, inputs=None, outputs=[solution_acc, end_btn, problem_acc, send_btn, audio_input]
    )

    audio_input.stop_recording(fn=transcribe_audio, inputs=[audio_input], outputs=[message]).then(
        fn=return_none, inputs=None, outputs=[audio_input]
    ).then(
        fn=send_request,
        inputs=[code, previous_code, message, chat_history, chat, model_select],
        outputs=[chat_history, chat, message, previous_code],
    )

    chat.change(fn=read_last_message, inputs=[chat], outputs=[audio_output])

    audio_output.stop(fn=return_none, inputs=None, outputs=[audio_output])

demo.launch()