Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import os | |
import random | |
import string | |
import time | |
from collections import defaultdict | |
from typing import Dict, Optional, Tuple | |
from openai import OpenAI | |
from api.llm import LLMManager | |
from utils.config import Config | |
from resources.data import fixed_messages, topic_lists | |
from resources.prompts import prompts | |
from tests.testing_prompts import candidate_prompt | |
def complete_interview( | |
interview_type: str, | |
exp_name: str, | |
llm_config: Optional[Config] = None, | |
requirements: str = "", | |
difficulty: str = "", | |
topic: str = "", | |
model: str = "gpt-3.5-turbo", | |
pause: int = 0, | |
mode: str = "normal", | |
max_messages: Optional[int] = None, | |
) -> Tuple[str, Dict]: | |
""" | |
Complete an interview and record the results with additional strange use cases. | |
:param interview_type: Type of interview to complete. | |
:param exp_name: Experiment name for file saving. | |
:param llm_config: Optional LLM configuration. | |
:param requirements: Additional requirements for the interview. | |
:param difficulty: Difficulty level for the interview. | |
:param topic: Topic for the interview. | |
:param model: Model to use for the candidate. | |
:param pause: Pause duration between requests to prevent rate limits. | |
:param mode: Mode of operation ("normal", "empty", "gibberish", "repeat"). | |
:param max_messages: Maximum number of messages in the conversation. | |
:return: Tuple containing the file path and interview data. | |
""" | |
client = OpenAI(base_url="https://api.openai.com/v1") | |
config = Config() | |
if llm_config: | |
config.llm = llm_config | |
llm = LLMManager(config, prompts) | |
llm_name = config.llm.name | |
print(f"Starting evaluation interviewer LLM: {llm_name}, candidate LLM: {model}, interview type: {interview_type}") | |
# Select a random topic or difficulty if not provided | |
topic = topic or random.choice(topic_lists[interview_type]) | |
difficulty = difficulty or random.choice(["easy", "medium", "hard"]) | |
for problem_statement_text in llm.get_problem(requirements, difficulty, topic, interview_type): | |
pass | |
interview_data = defaultdict( | |
lambda: None, | |
{ | |
"interviewer_llm": llm_name, | |
"candidate_llm": model, | |
"inputs": { | |
"interview_type": interview_type, | |
"difficulty": difficulty, | |
"topic": topic, | |
"requirements": requirements, | |
}, | |
"problem_statement": problem_statement_text, | |
"transcript": [], | |
"feedback": None, | |
"average_response_time_seconds": 0, | |
}, | |
) | |
# Initialize interviewer and candidate messages | |
messages_interviewer = llm.init_bot(problem_statement_text, interview_type) | |
chat_display = [[None, fixed_messages["start"]]] | |
messages_candidate = [ | |
{"role": "system", "content": candidate_prompt}, | |
{"role": "user", "content": f"Your problem: {problem_statement_text}"}, | |
{"role": "user", "content": chat_display[-1][1]}, | |
] | |
response_times = [] | |
previous_code = "" | |
if max_messages is None: | |
max_messages = 30 if mode == "normal" else 5 | |
for _ in range(max_messages): | |
if mode == "empty": | |
response_content = "" | |
elif mode == "gibberish": | |
response_content = "".join(random.choices(string.ascii_letters + string.digits, k=50)) | |
elif mode == "repeat": | |
response_content = chat_display[-1][1] | |
else: # normal mode | |
response = client.chat.completions.create( | |
model=model, messages=messages_candidate, temperature=1, response_format={"type": "json_object"} | |
) | |
response_json = json.loads(response.choices[0].message.content) | |
response_content = response_json.get("message", "") | |
candidate_message = response_content | |
if not candidate_message and mode != "empty": | |
print("No message in response") | |
continue | |
messages_candidate.append({"role": "assistant", "content": candidate_message}) | |
interview_data["transcript"].append(f"CANDIDATE MESSAGE: {candidate_message}") | |
chat_display.append([candidate_message, None]) | |
send_time = time.time() | |
for messages_interviewer, chat_display, previous_code in llm.send_request( | |
candidate_message, previous_code, messages_interviewer, chat_display | |
): | |
pass | |
response_times.append(time.time() - send_time) | |
messages_candidate.append({"role": "user", "content": chat_display[-1][1]}) | |
message_split = messages_interviewer[-1]["content"].split("#NOTES#") | |
interview_data["transcript"].append(f"INTERVIEWER MESSAGE: {message_split[0]}") | |
if len(message_split) > 1: | |
interview_data["transcript"].append(f"INTERVIEWER HIDDEN NOTE: {message_split[1]}") | |
time.sleep(pause) # to prevent exceeding rate limits | |
for fb in llm.end_interview(problem_statement_text, messages_interviewer, interview_type): | |
interview_data["feedback"] = fb | |
interview_data["average_response_time_seconds"] = round(sum(response_times) / len(response_times), 2) if response_times else 0 | |
current_time = time.strftime("%Y%m%d-%H%M%S") | |
random_suffix = "".join(random.choices(string.ascii_letters + string.digits, k=10)) | |
file_path = os.path.join("records", exp_name, f"{current_time}-{random_suffix}.json") | |
os.makedirs(os.path.dirname(file_path), exist_ok=True) | |
with open(file_path, "w") as file: | |
json.dump(interview_data, file, indent=4) | |
return file_path, interview_data | |