interviewer / api /llm.py
IliaLarchenko's picture
Added notes to interviewer response
278d569
raw
history blame
7.34 kB
import os
from openai import OpenAI
from utils.errors import APIError
class PromptManager:
def __init__(self, prompts):
self.prompts = prompts
self.limit = os.getenv("DEMO_WORD_LIMIT")
def add_limit(self, prompt):
if self.limit:
prompt += f" Keep your responses very short and simple, no more than {self.limit} words."
return prompt
def get_system_prompt(self, key):
prompt = self.prompts[key]
return self.add_limit(prompt)
def get_problem_requirements_prompt(self, type, difficulty=None, topic=None, requirements=None):
prompt = f"Create a {type} problem. Difficulty: {difficulty}. Topic: {topic} " f"Additional requirements: {requirements}. "
return self.add_limit(prompt)
class LLMManager:
def __init__(self, config, prompts):
self.config = config
self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key)
self.prompt_manager = PromptManager(prompts)
self.status = self.test_llm()
if self.status:
self.streaming = self.test_llm_stream()
else:
self.streaming = False
if self.streaming:
self.end_interview = self.end_interview_stream
self.get_problem = self.get_problem_stream
self.send_request = self.send_request_stream
else:
self.end_interview = self.end_interview_full
self.get_problem = self.get_problem_full
self.send_request = self.send_request_full
def text_processor(self):
def ans_full(response):
return response
def ans_stream(response):
yield from response
if self.streaming:
return ans_full
else:
return ans_stream
def get_text(self, messages):
try:
response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1)
if not response.choices:
raise APIError("LLM Get Text Error", details="No choices in response")
return response.choices[0].message.content.strip()
except Exception as e:
raise APIError(f"LLM Get Text Error: Unexpected error: {e}")
def get_text_stream(self, messages):
try:
response = self.client.chat.completions.create(
model=self.config.llm.name,
messages=messages,
temperature=1,
stream=True,
)
except Exception as e:
raise APIError(f"LLM End Interview Error: Unexpected error: {e}")
text = ""
for chunk in response:
if chunk.choices[0].delta.content:
text += chunk.choices[0].delta.content
yield text
test_messages = [
{"role": "system", "content": "You just help me test the connection."},
{"role": "user", "content": "Hi!"},
{"role": "user", "content": "Ping!"},
]
def test_llm(self):
try:
self.get_text(self.test_messages)
return True
except:
return False
def test_llm_stream(self):
try:
for _ in self.get_text_stream(self.test_messages):
pass
return True
except:
return False
def init_bot(self, problem, interview_type="coding"):
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt")
return [
{"role": "system", "content": system_prompt + f"\nThe candidate is solving the following problem:\n {problem}"},
]
def get_problem_prepare_messages(self, requirements, difficulty, topic, interview_type):
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt")
full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": full_prompt},
]
return messages
def get_problem_full(self, requirements, difficulty, topic, interview_type="coding"):
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
return self.get_text(messages)
def get_problem_stream(self, requirements, difficulty, topic, interview_type="coding"):
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
yield from self.get_text_stream(messages)
def update_chat_history(self, code, previous_code, chat_history, chat_display):
message = chat_display[-1][0]
if code != previous_code:
chat_history.append({"role": "user", "content": f"My latest solution:\n{code}"})
chat_history.append({"role": "user", "content": message})
return chat_history
def send_request_full(self, code, previous_code, chat_history, chat_display):
chat_history = self.update_chat_history(code, previous_code, chat_history, chat_display)
reply = self.get_text(chat_history)
chat_display.append([None, reply])
chat_history.append({"role": "assistant", "content": reply})
return chat_history, chat_display, code
def send_request_stream(self, code, previous_code, chat_history, chat_display):
chat_history = self.update_chat_history(code, previous_code, chat_history, chat_display)
chat_display.append([None, ""])
chat_history.append({"role": "assistant", "content": ""})
reply = self.get_text_stream(chat_history)
for message in reply:
chat_display[-1][1] = message.split("#NOTES#")[0].strip()
chat_history[-1]["content"] = message
yield chat_history, chat_display, code
def end_interview_prepare_messages(self, problem_description, chat_history, interview_type):
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt")
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"The original problem to solve: {problem_description}"},
{"role": "user", "content": "\n\n".join(transcript)},
{"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."},
]
return messages
def end_interview_full(self, problem_description, chat_history, interview_type="coding"):
if len(chat_history) <= 2:
return "No interview history available"
else:
messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type)
return self.get_text_stream(messages)
def end_interview_stream(self, problem_description, chat_history, interview_type="coding"):
if len(chat_history) <= 2:
yield "No interview history available"
else:
messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type)
yield from self.get_text_stream(messages)