interviewer / tests /candidate.py
IliaLarchenko's picture
Fixed tests and candidate simulation
8e8067f
raw
history blame
6.27 kB
import json
import os
import random
import string
import time
from collections import defaultdict
from typing import Dict, Optional, Tuple
from openai import OpenAI
from api.llm import LLMManager
from utils.config import Config
from resources.data import fixed_messages, topic_lists
from resources.prompts import prompts
from tests.testing_prompts import candidate_prompt
from ui.coding import send_request
def complete_interview(
interview_type: str,
exp_name: str,
llm_config: Optional[Config] = None,
requirements: str = "",
difficulty: str = "",
topic: str = "",
model: str = "gpt-4o-mini",
pause: int = 0,
mode: str = "normal",
max_messages: Optional[int] = None,
) -> Tuple[str, Dict]:
"""
Complete an interview and record the results with additional strange use cases.
:param interview_type: Type of interview to complete.
:param exp_name: Experiment name for file saving.
:param llm_config: Optional LLM configuration.
:param requirements: Additional requirements for the interview.
:param difficulty: Difficulty level for the interview.
:param topic: Topic for the interview.
:param model: Model to use for the candidate.
:param pause: Pause duration between requests to prevent rate limits.
:param mode: Mode of operation ("normal", "empty", "gibberish", "repeat").
:param max_messages: Maximum number of messages in the conversation.
:return: Tuple containing the file path and interview data.
"""
client = OpenAI(base_url="https://api.openai.com/v1")
config = Config()
if llm_config:
config.llm = llm_config
llm = LLMManager(config, prompts)
llm_name = config.llm.name
print(f"Starting evaluation interviewer LLM: {llm_name}, candidate LLM: {model}, interview type: {interview_type}")
# Select a random topic or difficulty if not provided
topic = topic or random.choice(topic_lists[interview_type])
difficulty = difficulty or random.choice(["easy", "medium", "hard"])
for problem_statement_text in llm.get_problem(requirements, difficulty, topic, interview_type):
pass
interview_data = defaultdict(
lambda: None,
{
"interviewer_llm": llm_name,
"candidate_llm": model,
"inputs": {
"interview_type": interview_type,
"difficulty": difficulty,
"topic": topic,
"requirements": requirements,
},
"problem_statement": problem_statement_text,
"transcript": [],
"feedback": None,
"average_response_time_seconds": 0,
},
)
# Initialize interviewer and candidate messages
messages_interviewer = llm.init_bot(problem_statement_text, interview_type)
chat_display = [[None, fixed_messages["start"]]]
messages_candidate = [
{"role": "system", "content": candidate_prompt},
{"role": "user", "content": f"Your problem: {problem_statement_text}"},
{"role": "user", "content": chat_display[-1][1]},
]
response_times = []
previous_code = ""
if max_messages is None:
max_messages = 25 if mode == "normal" else 5
for _ in range(max_messages):
code = ""
if mode == "empty":
candidate_message = ""
elif mode == "gibberish":
candidate_message = "".join(random.choices(string.ascii_letters + string.digits, k=50))
elif mode == "repeat":
candidate_message = chat_display[-1][1]
else:
response = client.chat.completions.create(
model=model, messages=messages_candidate, temperature=1, response_format={"type": "json_object"}, stream=False
)
try:
response_json = json.loads(response.choices[0].message.content)
candidate_message = response_json.get("message", "")
code = response_json.get("code_and_notes", "")
finished = response_json.get("finished", False)
question = response_json.get("question", False)
if finished and not question and not code:
break
except:
continue
if not candidate_message and not code and mode != "empty":
print("No message or code in response")
continue
if candidate_message:
messages_candidate.append({"role": "assistant", "content": candidate_message})
interview_data["transcript"].append(f"CANDIDATE MESSAGE: {candidate_message}")
if code:
interview_data["transcript"].append(f"CANDIDATE CODE AND NOTES: {code}")
messages_candidate.append({"role": "assistant", "content": code})
chat_display.append([candidate_message, None])
send_time = time.time()
for messages_interviewer, chat_display, previous_code, _ in send_request(
code, previous_code, messages_interviewer, chat_display, llm, tts=None, silent=True
):
pass
response_times.append(time.time() - send_time)
messages_candidate.append({"role": "user", "content": chat_display[-1][1]})
message_split = messages_interviewer[-1]["content"].split("#NOTES#")
interview_data["transcript"].append(f"INTERVIEWER MESSAGE: {message_split[0]}")
if len(message_split) > 1:
interview_data["transcript"].append(f"INTERVIEWER HIDDEN NOTE: {message_split[1]}")
time.sleep(pause) # to prevent exceeding rate limits
for fb in llm.end_interview(problem_statement_text, messages_interviewer, interview_type):
interview_data["feedback"] = fb
interview_data["average_response_time_seconds"] = round(sum(response_times) / len(response_times), 2) if response_times else 0
current_time = time.strftime("%Y%m%d-%H%M%S")
random_suffix = "".join(random.choices(string.ascii_letters + string.digits, k=10))
file_path = os.path.join("records", exp_name, f"{current_time}-{random_suffix}.json")
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w") as file:
json.dump(interview_data, file, indent=4)
return file_path, interview_data