interviewer / app.py
IliaLarchenko's picture
Debug fix
00be385
raw
history blame
7.13 kB
import os
import gradio as gr
from api.audio import STTManager, TTSManager
from api.llm import LLMManager
from config import config
from docs.instruction import instruction
from resources.data import fixed_messages, topics_list
from resources.prompts import prompts
from utils.ui import add_interviewer_message
llm = LLMManager(config, prompts)
tts = TTSManager(config)
stt = STTManager(config)
default_audio_params = {
"label": "Record answer",
"sources": ["microphone"],
"type": "numpy",
"waveform_options": {"show_controls": False},
"editable": False,
"container": False,
"show_share_button": False,
}
def hide_settings():
init_acc = gr.Accordion("Settings", open=False)
start_btn = gr.Button("Generate a problem", interactive=False)
return init_acc, start_btn
def show_solution():
solution_acc = gr.Accordion("Solution", open=True)
end_btn = gr.Button("Finish the interview", interactive=True)
audio_input = gr.Audio(interactive=True, **default_audio_params)
return solution_acc, end_btn, audio_input
def hide_solution():
solution_acc = gr.Accordion("Solution", open=False)
end_btn = gr.Button("Finish the interview", interactive=False)
problem_acc = gr.Accordion("Problem statement", open=False)
audio_input = gr.Audio(interactive=False, **default_audio_params)
return solution_acc, end_btn, problem_acc, audio_input
def get_status_color(obj):
if obj.status:
if obj.streaming:
return "🟒"
return "🟑"
return "πŸ”΄"
# Interface
with gr.Blocks(title="AI Interviewer") as demo:
if os.getenv("IS_DEMO"):
gr.Markdown(instruction["demo"])
started_coding = gr.State(False)
audio_output = gr.Audio(label="Play audio", autoplay=True, visible=os.environ.get("DEBUG", False), streaming=tts.streaming)
with gr.Tab("Instruction") as instruction_tab:
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(instruction["introduction"])
with gr.Column(scale=1):
space = " " * 10
tts_status = get_status_color(tts)
gr.Markdown(f"TTS status: {tts_status}{space}{config.tts.name}")
stt_status = get_status_color(stt)
gr.Markdown(f"STT status: {stt_status}{space}{config.stt.name}")
llm_status = get_status_color(llm)
gr.Markdown(f"LLM status: {llm_status}{space}{config.llm.name}")
gr.Markdown(instruction["quick_start"])
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(instruction["interface"])
with gr.Column(scale=1):
gr.Markdown("Bot interaction area will look like this. Use Record button to record your answer.")
chat_example = gr.Chatbot(
label="Chat", show_label=False, show_share_button=False, value=[["Candidate message", "Interviewer message"]]
)
audio_input_example = gr.Audio(interactive=True, **default_audio_params)
gr.Markdown(instruction["models"])
gr.Markdown(instruction["acknowledgements"])
gr.Markdown(instruction["legal"])
with gr.Tab("Coding") as coding_tab:
chat_history = gr.State([])
previous_code = gr.State("")
with gr.Accordion("Settings") as init_acc:
with gr.Row():
with gr.Column():
gr.Markdown("##### Problem settings")
with gr.Row():
gr.Markdown("Difficulty")
difficulty_select = gr.Dropdown(
label="Select difficulty",
choices=["Easy", "Medium", "Hard"],
value="Medium",
container=False,
allow_custom_value=True,
)
with gr.Row():
gr.Markdown("Topic (can type custom value)")
topic_select = gr.Dropdown(
label="Select topic", choices=topics_list, value="Arrays", container=False, allow_custom_value=True
)
with gr.Column(scale=2):
requirements = gr.Textbox(label="Requirements", placeholder="Specify additional requirements", lines=5)
start_btn = gr.Button("Generate a problem")
with gr.Accordion("Problem statement", open=True) as problem_acc:
description = gr.Markdown()
with gr.Accordion("Solution", open=False) as solution_acc:
with gr.Row() as content:
with gr.Column(scale=2):
code = gr.Code(
label="Please write your code here. You can use any language, but only Python syntax highlighting is available.",
language="python",
lines=35,
)
with gr.Column(scale=1):
end_btn = gr.Button("Finish the interview", interactive=False)
chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False)
audio_input = gr.Audio(interactive=False, **default_audio_params)
with gr.Accordion("Feedback", open=True) as feedback_acc:
feedback = gr.Markdown()
# Events
coding_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat, started_coding], outputs=[chat]).success(
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
)
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
fn=lambda: True, outputs=[started_coding]
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
fn=hide_settings, outputs=[init_acc, start_btn]
).success(
fn=llm.get_problem,
inputs=[requirements, difficulty_select, topic_select],
outputs=[description],
scroll_to_output=True,
).success(
fn=llm.init_bot, inputs=[description], outputs=[chat_history]
).success(
fn=show_solution, outputs=[solution_acc, end_btn, audio_input]
)
end_btn.click(
fn=add_interviewer_message(fixed_messages["end"]),
inputs=[chat],
outputs=[chat],
).success(
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
).success(fn=hide_solution, outputs=[solution_acc, end_btn, problem_acc, audio_input]).success(
fn=llm.end_interview, inputs=[description, chat_history], outputs=[feedback]
)
audio_input.stop_recording(fn=stt.add_user_message, inputs=[audio_input, chat], outputs=[chat]).success(
fn=lambda: None, outputs=[audio_input]
).success(
fn=llm.send_request,
inputs=[code, previous_code, chat_history, chat],
outputs=[chat_history, chat, previous_code],
).success(
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]
)
demo.launch(show_api=False)