interviewer / app.py
IliaLarchenko's picture
Improved all prompts
5f54ec7
raw
history blame
5.77 kB
import gradio as gr
from llm import end_interview, get_problem, read_last_message, send_request, transcribe_audio
from options import fixed_messages, models, topics_list
default_audio_params = {
"label": "Record answer",
"sources": ["microphone"],
"type": "numpy",
"waveform_options": {"show_controls": False},
"editable": False,
"container": False,
"show_share_button": False,
}
def hide_settings():
init_acc = gr.Accordion("Settings", open=False)
start_btn = gr.Button("Generate a problem", interactive=False)
solution_acc = gr.Accordion("Solution", open=True)
end_btn = gr.Button("Finish the interview", interactive=True)
audio_input = gr.Audio(interactive=True, **default_audio_params)
return init_acc, start_btn, solution_acc, end_btn, audio_input
def add_interviewer_message(message):
def f(chat):
chat.append((None, message))
return chat
return f
def hide_solution():
solution_acc = gr.Accordion("Solution", open=False)
end_btn = gr.Button("Finish the interview", interactive=False)
problem_acc = gr.Accordion("Problem statement", open=False)
audio_input = gr.Audio(interactive=False, **default_audio_params)
return solution_acc, end_btn, problem_acc, audio_input
with gr.Blocks() as demo:
gr.Markdown("Your coding interview practice AI assistant!")
# TODO: add other types of interviews (e.g. system design, ML design, behavioral, etc.)
with gr.Tab("Coding") as coding_tab:
chat_history = gr.State([])
previous_code = gr.State("")
client = gr.State(None)
client_started = gr.State(False)
with gr.Accordion("Settings") as init_acc:
with gr.Row():
with gr.Column():
gr.Markdown("##### Problem settings")
with gr.Row():
gr.Markdown("Difficulty")
difficulty_select = gr.Dropdown(
label="Select difficulty",
choices=["Easy", "Medium", "Hard"],
value="Medium",
container=False,
allow_custom_value=True,
)
with gr.Row():
gr.Markdown("Topic (can type custom value)")
topic_select = gr.Dropdown(
label="Select topic", choices=topics_list, value="Arrays", container=False, allow_custom_value=True
)
gr.Markdown("##### Assistant settings")
with gr.Row():
gr.Markdown("Select LLM model to use")
model_select = gr.Dropdown(label="Select model", choices=models, value="gpt-3.5-turbo", container=False)
with gr.Column(scale=2):
requirements = gr.Textbox(label="Requirements", placeholder="Specify additional requirements", lines=5)
start_btn = gr.Button("Generate a problem")
# TODO: select LLM model
with gr.Accordion("Problem statement", open=True) as problem_acc:
description = gr.Markdown()
with gr.Accordion("Solution", open=False) as solution_acc:
with gr.Row() as content:
with gr.Column(scale=2):
code = gr.Code(
label="Please write your code here. Only Python linting is available for now.", language="python", lines=35
)
with gr.Column(scale=1):
end_btn = gr.Button("Finish the interview", interactive=False)
chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False)
audio_input = gr.Audio(interactive=False, **default_audio_params)
audio_output = gr.Audio(label="Play audio", autoplay=True, visible=False)
message = gr.Textbox(label="Message", lines=3, visible=False)
with gr.Accordion("Feedback", open=True) as feedback_acc:
feedback = gr.Markdown()
with gr.Tab("Instruction") as instruction_tab:
pass
coding_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat], outputs=[chat])
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).then(
fn=get_problem,
inputs=[requirements, difficulty_select, topic_select, model_select],
outputs=[description, chat_history],
scroll_to_output=True,
).then(fn=hide_settings, inputs=None, outputs=[init_acc, start_btn, solution_acc, end_btn, audio_input])
message.submit(
fn=send_request,
inputs=[code, previous_code, message, chat_history, chat, model_select],
outputs=[chat_history, chat, message, previous_code],
)
end_btn.click(
fn=add_interviewer_message(fixed_messages["end"]),
inputs=[chat],
outputs=[chat],
).then(
fn=end_interview, inputs=[description, chat_history, model_select], outputs=feedback
).then(fn=hide_solution, inputs=None, outputs=[solution_acc, end_btn, problem_acc, audio_input])
audio_input.stop_recording(fn=transcribe_audio, inputs=[audio_input], outputs=[message]).then(
fn=lambda: None, inputs=None, outputs=[audio_input]
).then(
fn=send_request,
inputs=[code, previous_code, message, chat_history, chat, model_select],
outputs=[chat_history, chat, message, previous_code],
)
chat.change(fn=read_last_message, inputs=[chat], outputs=[audio_output])
audio_output.stop(fn=lambda: None, inputs=None, outputs=[audio_output])
demo.launch(show_api=False)