Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from api.audio import STTManager, TTSManager | |
from api.llm import LLMManager | |
from config import config | |
from docs.instruction import instruction | |
from resources.data import fixed_messages, topics_list | |
from resources.prompts import prompts | |
from utils.ui import add_candidate_message, add_interviewer_message | |
llm = LLMManager(config, prompts) | |
tts = TTSManager(config) | |
stt = STTManager(config) | |
default_audio_params = { | |
"label": "Record answer", | |
"sources": ["microphone"], | |
"type": "numpy", | |
"waveform_options": {"show_controls": False}, | |
"editable": False, | |
"container": False, | |
"show_share_button": False, | |
} | |
def hide_settings(): | |
init_acc = gr.Accordion("Settings", open=False) | |
start_btn = gr.Button("Generate a problem", interactive=False) | |
return init_acc, start_btn | |
def show_solution(): | |
solution_acc = gr.Accordion("Solution", open=True) | |
end_btn = gr.Button("Finish the interview", interactive=True) | |
audio_input = gr.Audio(interactive=True, **default_audio_params) | |
return solution_acc, end_btn, audio_input | |
def hide_solution(): | |
solution_acc = gr.Accordion("Solution", open=False) | |
end_btn = gr.Button("Finish the interview", interactive=False) | |
problem_acc = gr.Accordion("Problem statement", open=False) | |
audio_input = gr.Audio(interactive=False, **default_audio_params) | |
return solution_acc, end_btn, problem_acc, audio_input | |
def get_status_color(obj): | |
if obj.status: | |
if obj.streaming: | |
return "π’" | |
return "π‘" | |
return "π΄" | |
# Interface | |
with gr.Blocks(title="AI Interviewer") as demo: | |
if os.getenv("IS_DEMO"): | |
gr.Markdown(instruction["demo"]) | |
started_coding = gr.State(False) | |
audio_output = gr.Audio(label="Play audio", autoplay=True, visible=os.environ["DEBUG"], streaming=tts.streaming) | |
with gr.Tab("Instruction") as instruction_tab: | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Markdown(instruction["introduction"]) | |
with gr.Column(scale=1): | |
space = " " * 10 | |
tts_status = get_status_color(tts) | |
gr.Markdown(f"TTS status: {tts_status}{space}{config.tts.name}") | |
try: | |
text_test = stt.speech_to_text(audio_test, False) | |
gr.Markdown(f"STT status: π’{space} {config.stt.name}") | |
except: | |
gr.Markdown(f"STT status: π΄{space} {config.stt.name}") | |
llm_status = get_status_color(llm) | |
gr.Markdown(f"LLM status: {llm_status}{space}{config.llm.name}") | |
gr.Markdown(instruction["quick_start"]) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Markdown(instruction["interface"]) | |
with gr.Column(scale=1): | |
gr.Markdown("Bot interaction area will look like this. Use Record button to record your answer.") | |
chat_example = gr.Chatbot( | |
label="Chat", show_label=False, show_share_button=False, value=[["Candidate message", "Interviewer message"]] | |
) | |
audio_input_example = gr.Audio(interactive=True, **default_audio_params) | |
gr.Markdown(instruction["models"]) | |
gr.Markdown(instruction["acknowledgements"]) | |
with gr.Tab("Coding") as coding_tab: | |
chat_history = gr.State([]) | |
previous_code = gr.State("") | |
with gr.Accordion("Settings") as init_acc: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("##### Problem settings") | |
with gr.Row(): | |
gr.Markdown("Difficulty") | |
difficulty_select = gr.Dropdown( | |
label="Select difficulty", | |
choices=["Easy", "Medium", "Hard"], | |
value="Medium", | |
container=False, | |
allow_custom_value=True, | |
) | |
with gr.Row(): | |
gr.Markdown("Topic (can type custom value)") | |
topic_select = gr.Dropdown( | |
label="Select topic", choices=topics_list, value="Arrays", container=False, allow_custom_value=True | |
) | |
with gr.Column(scale=2): | |
requirements = gr.Textbox(label="Requirements", placeholder="Specify additional requirements", lines=5) | |
start_btn = gr.Button("Generate a problem") | |
with gr.Accordion("Problem statement", open=True) as problem_acc: | |
description = gr.Markdown() | |
with gr.Accordion("Solution", open=False) as solution_acc: | |
with gr.Row() as content: | |
with gr.Column(scale=2): | |
code = gr.Code( | |
label="Please write your code here. You can use any language, but only Python syntax highlighting is available.", | |
language="python", | |
lines=35, | |
) | |
with gr.Column(scale=1): | |
end_btn = gr.Button("Finish the interview", interactive=False) | |
chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False) | |
audio_input = gr.Audio(interactive=False, **default_audio_params) | |
message = gr.Textbox(label="Message", lines=3, visible=False) | |
with gr.Accordion("Feedback", open=True) as feedback_acc: | |
feedback = gr.Markdown() | |
# Events | |
coding_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat, started_coding], outputs=[chat]).then( | |
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output] | |
) | |
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).then( | |
fn=lambda: True, outputs=[started_coding] | |
).then(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).then(fn=hide_settings, outputs=[init_acc, start_btn]).then( | |
fn=llm.get_problem, | |
inputs=[requirements, difficulty_select, topic_select], | |
outputs=[description], | |
scroll_to_output=True, | |
).then( | |
fn=llm.init_bot, inputs=[description], outputs=[chat_history] | |
).then( | |
fn=show_solution, outputs=[solution_acc, end_btn, audio_input] | |
) | |
end_btn.click( | |
fn=add_interviewer_message(fixed_messages["end"]), | |
inputs=[chat], | |
outputs=[chat], | |
).then( | |
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output] | |
).then(fn=hide_solution, outputs=[solution_acc, end_btn, problem_acc, audio_input]).then( | |
fn=llm.end_interview, inputs=[description, chat_history], outputs=[feedback] | |
) | |
audio_input.stop_recording(fn=stt.speech_to_text, inputs=[audio_input], outputs=[message]).then( | |
fn=lambda: None, outputs=[audio_input] | |
).then(fn=add_candidate_message, inputs=[message, chat], outputs=[chat]).then( | |
fn=llm.send_request, | |
inputs=[code, previous_code, message, chat_history, chat], | |
outputs=[chat_history, chat, previous_code], | |
).then( | |
fn=tts.read_last_message, inputs=[chat], outputs=[audio_output] | |
).then( | |
fn=lambda: "", outputs=[message] | |
) | |
demo.launch(show_api=False) | |