Spaces:
Sleeping
Sleeping
IliaLarchenko
commited on
Commit
•
44800eb
1
Parent(s):
1273e6d
Added errors handling
Browse files- .env.huggingface.example +1 -1
- api/audio.py +56 -20
- api/llm.py +58 -43
- docs/instruction.py +1 -1
- utils/errors.py +15 -0
.env.huggingface.example
CHANGED
@@ -24,7 +24,7 @@ STT_NAME=whisper-tiny.en
|
|
24 |
|
25 |
# You can use compatible TTS model from HuggingFace
|
26 |
# For example you can try public Inference API endpoint for Facebook MMS-TTS model
|
27 |
-
#
|
28 |
TTS_URL=https://api-inference.huggingface.co/models/facebook/mms-tts-eng
|
29 |
TTS_TYPE=HF_API
|
30 |
TTS_NAME=Facebook-mms-tts-eng
|
|
|
24 |
|
25 |
# You can use compatible TTS model from HuggingFace
|
26 |
# For example you can try public Inference API endpoint for Facebook MMS-TTS model
|
27 |
+
# In my experience OS TTS models from HF sound much more robotic than OpenAI TTS models
|
28 |
TTS_URL=https://api-inference.huggingface.co/models/facebook/mms-tts-eng
|
29 |
TTS_TYPE=HF_API
|
30 |
TTS_NAME=Facebook-mms-tts-eng
|
api/audio.py
CHANGED
@@ -5,6 +5,8 @@ import requests
|
|
5 |
|
6 |
from openai import OpenAI
|
7 |
|
|
|
|
|
8 |
|
9 |
def numpy_audio_to_bytes(audio_data):
|
10 |
sample_rate = 44100
|
@@ -12,11 +14,14 @@ def numpy_audio_to_bytes(audio_data):
|
|
12 |
sampwidth = 2
|
13 |
|
14 |
buffer = io.BytesIO()
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
return buffer.getvalue()
|
21 |
|
22 |
|
@@ -28,14 +33,31 @@ class STTManager:
|
|
28 |
if convert_to_bytes:
|
29 |
audio = numpy_audio_to_bytes(audio[1])
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
return transcription
|
41 |
|
@@ -45,18 +67,32 @@ class TTSManager:
|
|
45 |
self.config = config
|
46 |
|
47 |
def text_to_speech(self, text):
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
return response.content
|
56 |
|
57 |
def read_last_message(self, chat_display):
|
58 |
if chat_display:
|
59 |
-
last_message = chat_display[-1][1]
|
60 |
if last_message is not None:
|
61 |
return self.text_to_speech(last_message)
|
62 |
return None
|
|
|
5 |
|
6 |
from openai import OpenAI
|
7 |
|
8 |
+
from utils.errors import APIError, AudioConversionError
|
9 |
+
|
10 |
|
11 |
def numpy_audio_to_bytes(audio_data):
|
12 |
sample_rate = 44100
|
|
|
14 |
sampwidth = 2
|
15 |
|
16 |
buffer = io.BytesIO()
|
17 |
+
try:
|
18 |
+
with wave.open(buffer, "wb") as wf:
|
19 |
+
wf.setnchannels(num_channels)
|
20 |
+
wf.setsampwidth(sampwidth)
|
21 |
+
wf.setframerate(sample_rate)
|
22 |
+
wf.writeframes(audio_data.tobytes())
|
23 |
+
except Exception as e:
|
24 |
+
raise AudioConversionError(f"Error converting numpy array to audio bytes: {e}")
|
25 |
return buffer.getvalue()
|
26 |
|
27 |
|
|
|
33 |
if convert_to_bytes:
|
34 |
audio = numpy_audio_to_bytes(audio[1])
|
35 |
|
36 |
+
try:
|
37 |
+
if self.config.stt.type == "OPENAI_API":
|
38 |
+
data = ("temp.wav", audio, "audio/wav")
|
39 |
+
client = OpenAI(base_url=self.config.stt.url, api_key=self.config.stt.key)
|
40 |
+
response = client.audio.transcriptions.create(model=self.config.stt.name, file=data, response_format="text")
|
41 |
+
if not response.success:
|
42 |
+
raise APIError(
|
43 |
+
"STT Error: OpenAI API error",
|
44 |
+
status_code=response.status_code,
|
45 |
+
details=response.error.get("message", "No error message provided"),
|
46 |
+
)
|
47 |
+
transcription = response.data
|
48 |
+
elif self.config.stt.type == "HF_API":
|
49 |
+
headers = {"Authorization": "Bearer " + self.config.stt.key}
|
50 |
+
response = requests.post(self.config.stt.url, headers=headers, data=audio)
|
51 |
+
if response.status_code != 200:
|
52 |
+
error_details = response.json().get("error", "No error message provided")
|
53 |
+
raise APIError("STT Error: HF API error", status_code=response.status_code, details=error_details)
|
54 |
+
transcription = response.json().get("text", None)
|
55 |
+
if transcription is None:
|
56 |
+
raise APIError("STT Error: No transcription returned by HF API")
|
57 |
+
except APIError as e:
|
58 |
+
raise
|
59 |
+
except Exception as e:
|
60 |
+
raise APIError(f"STT Error: Unexpected error: {e}")
|
61 |
|
62 |
return transcription
|
63 |
|
|
|
67 |
self.config = config
|
68 |
|
69 |
def text_to_speech(self, text):
|
70 |
+
try:
|
71 |
+
if self.config.tts.type == "OPENAI_API":
|
72 |
+
client = OpenAI(base_url=self.config.tts.url, api_key=self.config.tts.key)
|
73 |
+
response = client.audio.speech.create(model=self.config.tts.name, voice="alloy", response_format="opus", input=text)
|
74 |
+
if not response.success:
|
75 |
+
raise APIError(
|
76 |
+
"TTS Error: OpenAI API error",
|
77 |
+
status_code=response.status_code,
|
78 |
+
details=response.error.get("message", "No error message provided"),
|
79 |
+
)
|
80 |
+
elif self.config.tts.type == "HF_API":
|
81 |
+
headers = {"Authorization": "Bearer " + self.config.tts.key}
|
82 |
+
response = requests.post(self.config.tts.url, headers=headers, json={"inputs": text})
|
83 |
+
if response.status_code != 200:
|
84 |
+
error_details = response.json().get("error", "No error message provided")
|
85 |
+
raise APIError("TTS Error: HF API error", status_code=response.status_code, details=error_details)
|
86 |
+
except APIError as e:
|
87 |
+
raise
|
88 |
+
except Exception as e:
|
89 |
+
raise APIError(f"TTS Error: Unexpected error: {e}")
|
90 |
|
91 |
return response.content
|
92 |
|
93 |
def read_last_message(self, chat_display):
|
94 |
if chat_display:
|
95 |
+
last_message = chat_display[-1][1]
|
96 |
if last_message is not None:
|
97 |
return self.text_to_speech(last_message)
|
98 |
return None
|
api/llm.py
CHANGED
@@ -2,6 +2,8 @@ import os
|
|
2 |
|
3 |
from openai import OpenAI
|
4 |
|
|
|
|
|
5 |
|
6 |
class LLMManager:
|
7 |
def __init__(self, config, prompts):
|
@@ -10,27 +12,30 @@ class LLMManager:
|
|
10 |
self.prompts = prompts
|
11 |
|
12 |
def test_connection(self):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def init_bot(self, problem=""):
|
24 |
-
|
25 |
system_prompt = self.prompts["coding_interviewer_prompt"]
|
26 |
if os.getenv("IS_DEMO"):
|
27 |
system_prompt += " Keep your responses very short and simple, no more than 100 words."
|
28 |
|
29 |
-
|
30 |
{"role": "system", "content": system_prompt},
|
31 |
{"role": "system", "content": f"The candidate is solving the following problem: {problem}"},
|
32 |
]
|
33 |
-
return chat_history
|
34 |
|
35 |
def get_problem(self, requirements, difficulty, topic):
|
36 |
full_prompt = (
|
@@ -43,61 +48,71 @@ class LLMManager:
|
|
43 |
if os.getenv("IS_DEMO"):
|
44 |
full_prompt += " Keep your response very short and simple, no more than 200 words."
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
chat_history = self.init_bot(question)
|
56 |
return question, chat_history
|
57 |
|
58 |
def send_request(self, code, previous_code, message, chat_history, chat_display):
|
59 |
-
# Update chat history if code has changed
|
60 |
if code != previous_code:
|
61 |
chat_history.append({"role": "user", "content": f"My latest code:\n{code}"})
|
62 |
chat_history.append({"role": "user", "content": message})
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
chat_history.append({"role": "assistant", "content": reply})
|
68 |
|
69 |
-
# Update chat display with the new reply
|
70 |
if chat_display:
|
71 |
chat_display[-1][1] = reply
|
72 |
else:
|
73 |
chat_display.append([message, reply])
|
74 |
|
75 |
-
# Return updated chat history, chat display, an empty string placeholder, and the unchanged code
|
76 |
return chat_history, chat_display, "", code
|
77 |
|
78 |
def end_interview(self, problem_description, chat_history):
|
79 |
if not chat_history or len(chat_history) <= 2:
|
80 |
return "No interview content available to review."
|
81 |
|
82 |
-
transcript = []
|
83 |
-
for message in chat_history[1:]:
|
84 |
-
role = message["role"]
|
85 |
-
content = f"{role.capitalize()}: {message['content']}"
|
86 |
-
transcript.append(content)
|
87 |
|
88 |
system_prompt = self.prompts["grading_feedback_prompt"]
|
89 |
if os.getenv("IS_DEMO"):
|
90 |
system_prompt += " Keep your response very short and simple, no more than 200 words."
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
return feedback
|
|
|
2 |
|
3 |
from openai import OpenAI
|
4 |
|
5 |
+
from utils.errors import APIError
|
6 |
+
|
7 |
|
8 |
class LLMManager:
|
9 |
def __init__(self, config, prompts):
|
|
|
12 |
self.prompts = prompts
|
13 |
|
14 |
def test_connection(self):
|
15 |
+
try:
|
16 |
+
response = self.client.chat.completions.create(
|
17 |
+
model=self.config.llm.name,
|
18 |
+
messages=[
|
19 |
+
{"role": "system", "content": "You just help me test the connection."},
|
20 |
+
{"role": "user", "content": "Hi!"},
|
21 |
+
{"role": "user", "content": "Ping!"},
|
22 |
+
],
|
23 |
+
)
|
24 |
+
if not response.choices:
|
25 |
+
raise APIError("LLM Test Connection Error", details="No choices in response")
|
26 |
+
return response.choices[0].message.content.strip()
|
27 |
+
except Exception as e:
|
28 |
+
raise APIError(f"LLM Test Connection Error: Unexpected error: {e}")
|
29 |
|
30 |
def init_bot(self, problem=""):
|
|
|
31 |
system_prompt = self.prompts["coding_interviewer_prompt"]
|
32 |
if os.getenv("IS_DEMO"):
|
33 |
system_prompt += " Keep your responses very short and simple, no more than 100 words."
|
34 |
|
35 |
+
return [
|
36 |
{"role": "system", "content": system_prompt},
|
37 |
{"role": "system", "content": f"The candidate is solving the following problem: {problem}"},
|
38 |
]
|
|
|
39 |
|
40 |
def get_problem(self, requirements, difficulty, topic):
|
41 |
full_prompt = (
|
|
|
48 |
if os.getenv("IS_DEMO"):
|
49 |
full_prompt += " Keep your response very short and simple, no more than 200 words."
|
50 |
|
51 |
+
try:
|
52 |
+
response = self.client.chat.completions.create(
|
53 |
+
model=self.config.llm.name,
|
54 |
+
messages=[
|
55 |
+
{"role": "system", "content": self.prompts["problem_generation_prompt"]},
|
56 |
+
{"role": "user", "content": full_prompt},
|
57 |
+
],
|
58 |
+
temperature=1.0,
|
59 |
+
)
|
60 |
+
if not response.choices:
|
61 |
+
raise APIError("LLM Problem Generation Error", details="No choices in response")
|
62 |
+
question = response.choices[0].message.content.strip()
|
63 |
+
except Exception as e:
|
64 |
+
raise APIError(f"LLM Problem Generation Error: Unexpected error: {e}")
|
65 |
+
|
66 |
chat_history = self.init_bot(question)
|
67 |
return question, chat_history
|
68 |
|
69 |
def send_request(self, code, previous_code, message, chat_history, chat_display):
|
|
|
70 |
if code != previous_code:
|
71 |
chat_history.append({"role": "user", "content": f"My latest code:\n{code}"})
|
72 |
chat_history.append({"role": "user", "content": message})
|
73 |
|
74 |
+
try:
|
75 |
+
response = self.client.chat.completions.create(model=self.config.llm.name, messages=chat_history)
|
76 |
+
if not response.choices:
|
77 |
+
raise APIError("LLM Send Request Error", details="No choices in response")
|
78 |
+
reply = response.choices[0].message.content.strip()
|
79 |
+
except Exception as e:
|
80 |
+
raise APIError(f"LLM Send Request Error: Unexpected error: {e}")
|
81 |
+
|
82 |
chat_history.append({"role": "assistant", "content": reply})
|
83 |
|
|
|
84 |
if chat_display:
|
85 |
chat_display[-1][1] = reply
|
86 |
else:
|
87 |
chat_display.append([message, reply])
|
88 |
|
|
|
89 |
return chat_history, chat_display, "", code
|
90 |
|
91 |
def end_interview(self, problem_description, chat_history):
|
92 |
if not chat_history or len(chat_history) <= 2:
|
93 |
return "No interview content available to review."
|
94 |
|
95 |
+
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
|
|
|
|
|
|
|
|
|
96 |
|
97 |
system_prompt = self.prompts["grading_feedback_prompt"]
|
98 |
if os.getenv("IS_DEMO"):
|
99 |
system_prompt += " Keep your response very short and simple, no more than 200 words."
|
100 |
|
101 |
+
try:
|
102 |
+
response = self.client.chat.completions.create(
|
103 |
+
model=self.config.llm.name,
|
104 |
+
messages=[
|
105 |
+
{"role": "system", "content": system_prompt},
|
106 |
+
{"role": "user", "content": f"The original problem to solve: {problem_description}"},
|
107 |
+
{"role": "user", "content": "\n\n".join(transcript)},
|
108 |
+
{"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."},
|
109 |
+
],
|
110 |
+
temperature=0.5,
|
111 |
+
)
|
112 |
+
if not response.choices:
|
113 |
+
raise APIError("LLM End Interview Error", details="No choices in response")
|
114 |
+
feedback = response.choices[0].message.content.strip()
|
115 |
+
except Exception as e:
|
116 |
+
raise APIError(f"LLM End Interview Error: Unexpected error: {e}")
|
117 |
+
|
118 |
return feedback
|
docs/instruction.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
instruction = {
|
4 |
"demo": """
|
5 |
<span style="color: red;">
|
6 |
-
This is a demo version utilizing free API access with strict request limits. As a result, the experience may be slow, occasionally buggy, and not of the highest quality. If a model is unavailable, please wait for a minute before retrying. Persistent unavailability may indicate that the request limit has been reached, making the demo temporarily inaccessible.
|
7 |
For a significantly better experience, please run the service locally and use your own OpenAI key or HuggingFace models.
|
8 |
</span>
|
9 |
|
|
|
3 |
instruction = {
|
4 |
"demo": """
|
5 |
<span style="color: red;">
|
6 |
+
This is a demo version utilizing free API access with strict request limits. As a result, the experience may be slow, occasionally buggy, and not of the highest quality (e.g. robotic voice and very short problem and feedback). If a model is unavailable, please wait for a minute before retrying. Persistent unavailability may indicate that the request limit has been reached, making the demo temporarily inaccessible.
|
7 |
For a significantly better experience, please run the service locally and use your own OpenAI key or HuggingFace models.
|
8 |
</span>
|
9 |
|
utils/errors.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class AudioConversionError(Exception):
|
2 |
+
"""Exception raised for errors in the audio conversion process."""
|
3 |
+
|
4 |
+
pass
|
5 |
+
|
6 |
+
|
7 |
+
class APIError(Exception):
|
8 |
+
"""Custom exception for API error handling."""
|
9 |
+
|
10 |
+
def __init__(self, message, status_code=None, details=None):
|
11 |
+
if details:
|
12 |
+
super().__init__(f"{message} - Details: {details}")
|
13 |
+
else:
|
14 |
+
super().__init__(message)
|
15 |
+
self.status_code = status_code
|