Spaces:
Sleeping
Sleeping
IliaLarchenko
commited on
Commit
•
56bfed7
1
Parent(s):
1aaf3fc
Added some analytics functions
Browse files- tests/analysis.py +142 -0
tests/analysis.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# to use analytics tools you need to install some extra libraries
|
2 |
+
# !pip install pandas
|
3 |
+
|
4 |
+
from tests.candidate import complete_interview
|
5 |
+
from tests.grader import grade
|
6 |
+
import pandas as pd
|
7 |
+
from functools import partial
|
8 |
+
import concurrent.futures
|
9 |
+
import os
|
10 |
+
from IPython.display import display
|
11 |
+
|
12 |
+
|
13 |
+
def complete_and_grade(interview_params, exp_name="GPT4", grader_model="gpt-4-turbo", candidate_model="gpt-3.5-turbo"):
|
14 |
+
interview_type, attempt_num = interview_params
|
15 |
+
feedback = {}
|
16 |
+
|
17 |
+
try:
|
18 |
+
file_path, _ = complete_interview(interview_type, exp_name, model=candidate_model)
|
19 |
+
feedback = grade(file_path, grader_model)
|
20 |
+
|
21 |
+
# Just a heuristic check of the JSON format TODO: add a proper check
|
22 |
+
if "problem_statement_topic" not in feedback:
|
23 |
+
raise Exception("Grading failed")
|
24 |
+
|
25 |
+
print(f"Attempt {attempt_num + 1} of {interview_type} completed successfully")
|
26 |
+
print(f"Overall score: {feedback['overall_score']}")
|
27 |
+
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Attempt {attempt_num + 1} of {interview_type} failed with error: {e}")
|
30 |
+
|
31 |
+
return feedback
|
32 |
+
|
33 |
+
|
34 |
+
def run_evaluation(
|
35 |
+
exp_name,
|
36 |
+
num=5,
|
37 |
+
interview_types=["ml_design", "math", "ml_theory", "system_design", "sql", "coding"],
|
38 |
+
grader_model="gpt-4-turbo",
|
39 |
+
candidate_model="gpt-3.5-turbo",
|
40 |
+
num_workers=3,
|
41 |
+
):
|
42 |
+
exp_name = f"{exp_name}_{pd.Timestamp.now().strftime('%Y-%m-%d_%H-%M-%S')}"
|
43 |
+
os.makedirs(f"records/{exp_name}", exist_ok=True)
|
44 |
+
tasks = [(interview_type, i) for i in range(num) for interview_type in interview_types]
|
45 |
+
complete_f = partial(complete_and_grade, exp_name=exp_name, grader_model=grader_model, candidate_model=candidate_model)
|
46 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
|
47 |
+
results = list(executor.map(complete_f, tasks))
|
48 |
+
|
49 |
+
# Filter out empty results and count them
|
50 |
+
non_empty_results = [res for res in results if res]
|
51 |
+
empty_count = len(results) - len(non_empty_results)
|
52 |
+
|
53 |
+
print(f"Number of empty results (errors or failed grading): {empty_count}")
|
54 |
+
|
55 |
+
# Store non-empty results in a DataFrame
|
56 |
+
df = pd.DataFrame(non_empty_results)
|
57 |
+
df.to_csv(os.path.join("records", exp_name, "results.csv"), index=False)
|
58 |
+
|
59 |
+
return exp_name
|
60 |
+
|
61 |
+
|
62 |
+
def highlight_color(val):
|
63 |
+
color = "red" if val < 0.7 else "orange" if val < 0.9 else "lightgreen" if val < 0.95 else "green"
|
64 |
+
return f"color: {color}"
|
65 |
+
|
66 |
+
|
67 |
+
def generate_and_display_tables(df):
|
68 |
+
# Grouping by prefix
|
69 |
+
prefixes = ["problem", "interviewer", "feedback"]
|
70 |
+
prefix_columns = [col for col in df.columns if any(col.startswith(prefix) for prefix in prefixes)]
|
71 |
+
|
72 |
+
# Aggregated scores per stage
|
73 |
+
grouped_scores = {}
|
74 |
+
for prefix in prefixes:
|
75 |
+
prefix_cols = [col for col in df.columns if col.startswith(prefix)]
|
76 |
+
grouped_scores[prefix] = df[prefix_cols].mean(axis=1).mean()
|
77 |
+
|
78 |
+
grouped_scores_df = pd.DataFrame([grouped_scores]).T
|
79 |
+
grouped_scores_df.columns = ["avg score"]
|
80 |
+
grouped_scores_styled = grouped_scores_df.style.map(highlight_color)
|
81 |
+
grouped_scores_styled.set_caption("Aggregated Scores per Stage")
|
82 |
+
|
83 |
+
# Grouped by unique type
|
84 |
+
grouped_by_type = pd.DataFrame(df.groupby("type")[prefix_columns].mean().mean(axis=1), columns=["avg score"])
|
85 |
+
grouped_by_type_styled = grouped_by_type.style.map(highlight_color)
|
86 |
+
grouped_by_type_styled.set_caption("Scores Grouped by Unique Type")
|
87 |
+
|
88 |
+
# Grouped by unique interviewer model and sorted by descending total score
|
89 |
+
total_llm_scores = df.groupby("agent_llm")[prefix_columns].mean().mean(axis=1).sort_values(ascending=False)
|
90 |
+
grouped_by_interviewer = pd.DataFrame(total_llm_scores, columns=["avg score"])
|
91 |
+
grouped_by_interviewer_styled = grouped_by_interviewer.style.map(highlight_color)
|
92 |
+
grouped_by_interviewer_styled.set_caption("Scores Grouped by Unique Interviewer Model")
|
93 |
+
|
94 |
+
for prefix in prefixes:
|
95 |
+
prefix_cols = [col for col in prefix_columns if col.startswith(prefix)]
|
96 |
+
df[prefix] = df[prefix_cols].mean(axis=1)
|
97 |
+
|
98 |
+
# Pivot table: Agent model vs Stage
|
99 |
+
pivot1 = pd.pivot_table(df, values=prefixes, index="agent_llm", aggfunc="mean").reindex(total_llm_scores.index)
|
100 |
+
pivot1_styled = pivot1.style.map(highlight_color)
|
101 |
+
pivot1_styled.set_caption("Pivot Table: Agent Model vs Stage")
|
102 |
+
|
103 |
+
# Pivot table: Agent model vs Type (Single aggregated score per type)
|
104 |
+
pivot2 = pd.pivot_table(df, values="overall_score", index="agent_llm", columns="type", aggfunc="mean").reindex(total_llm_scores.index)
|
105 |
+
pivot2_styled = pivot2.style.map(highlight_color)
|
106 |
+
pivot2_styled.set_caption("Pivot Table: Agent Model vs Type")
|
107 |
+
|
108 |
+
# Pivot table: Type vs Stage
|
109 |
+
pivot3 = pd.pivot_table(df, values=prefixes, index="type", aggfunc="mean")
|
110 |
+
pivot3_styled = pivot3.style.map(highlight_color)
|
111 |
+
pivot3_styled.set_caption("Pivot Table: Type vs Stage")
|
112 |
+
|
113 |
+
# Pivot table: Agent Model x Stage vs Type (MultiIndex)
|
114 |
+
multi_index_data = [(llm, stage) for llm in total_llm_scores.index for stage in prefixes]
|
115 |
+
multi_index = pd.MultiIndex.from_tuples(multi_index_data, names=["agent_llm", "stage"])
|
116 |
+
types = df["type"].unique()
|
117 |
+
pivot4_df = pd.DataFrame(index=multi_index, columns=types)
|
118 |
+
|
119 |
+
# Fill the DataFrame with the aggregated scores grouped by type
|
120 |
+
for llm in total_llm_scores.index:
|
121 |
+
for stage in prefixes:
|
122 |
+
mask = df["agent_llm"] == llm
|
123 |
+
stage_values = df.loc[mask, ["type", stage]].groupby("type").mean()[stage]
|
124 |
+
pivot4_df.loc[(llm, stage), :] = stage_values
|
125 |
+
|
126 |
+
pivot4_styled = pivot4_df.style.map(highlight_color)
|
127 |
+
pivot4_styled.set_caption("Pivot Table: Agent Model x Stage vs Type")
|
128 |
+
|
129 |
+
tables_dict = {
|
130 |
+
"grouped_scores_styled": grouped_scores_styled,
|
131 |
+
"grouped_by_type_styled": grouped_by_type_styled,
|
132 |
+
"grouped_by_interviewer_styled": grouped_by_interviewer_styled,
|
133 |
+
"pivot1_styled": pivot1_styled,
|
134 |
+
"pivot2_styled": pivot2_styled,
|
135 |
+
"pivot3_styled": pivot3_styled,
|
136 |
+
"pivot4_styled": pivot4_styled,
|
137 |
+
}
|
138 |
+
|
139 |
+
for table in tables_dict.values():
|
140 |
+
display(table)
|
141 |
+
|
142 |
+
return tables_dict
|