Spaces:
Sleeping
Sleeping
IliaLarchenko
commited on
Commit
·
b989f04
1
Parent(s):
6bb887d
Cleaned up audio.py
Browse files- api/audio.py +5 -68
api/audio.py
CHANGED
@@ -41,7 +41,7 @@ class STTManager:
|
|
41 |
|
42 |
self.config = config
|
43 |
self.status = self.test_stt()
|
44 |
-
self.streaming = self.
|
45 |
|
46 |
def numpy_audio_to_bytes(self, audio_data: np.ndarray) -> bytes:
|
47 |
"""
|
@@ -70,8 +70,7 @@ class STTManager:
|
|
70 |
|
71 |
:param audio: Tuple containing the sample rate and audio data as numpy array.
|
72 |
:param audio_buffer: Current audio buffer as numpy array.
|
73 |
-
:
|
74 |
-
:return: Updated transcript, updated audio buffer, and transcript text.
|
75 |
"""
|
76 |
|
77 |
has_voice = detect_voice(audio[1])
|
@@ -87,69 +86,19 @@ class STTManager:
|
|
87 |
|
88 |
return np.array([], dtype=np.int16), audio_buffer
|
89 |
|
90 |
-
def transcribe_audio(self, audio: np.ndarray, text) -> str:
|
91 |
if len(audio) < 500:
|
92 |
return text
|
93 |
else:
|
94 |
transcript = self.transcribe_numpy_array(audio, context=text)
|
95 |
return text + " " + transcript
|
96 |
|
97 |
-
def speech_to_text_stream(self, audio: bytes) -> List[Dict[str, str]]:
|
98 |
-
"""
|
99 |
-
Convert speech to text from a byte stream using streaming.
|
100 |
-
|
101 |
-
:param audio: Bytes representation of audio data.
|
102 |
-
:return: List of dictionaries containing transcribed words and their timestamps.
|
103 |
-
"""
|
104 |
-
if self.config.stt.type == "HF_API":
|
105 |
-
raise APIError("STT Error: Streaming not supported for this STT type")
|
106 |
-
try:
|
107 |
-
data = ("temp.wav", audio, "audio/wav")
|
108 |
-
client = OpenAI(base_url=self.config.stt.url, api_key=self.config.stt.key)
|
109 |
-
transcription = client.audio.transcriptions.create(
|
110 |
-
model=self.config.stt.name, file=data, response_format="verbose_json", timestamp_granularities=["word"]
|
111 |
-
)
|
112 |
-
except APIError:
|
113 |
-
raise
|
114 |
-
except Exception as e:
|
115 |
-
raise APIError(f"STT Error: Unexpected error: {e}")
|
116 |
-
return transcription.words
|
117 |
-
|
118 |
-
def merge_transcript(self, transcript: Dict, new_transcript: List[Dict[str, str]]) -> Dict:
|
119 |
-
"""
|
120 |
-
Merge new transcript data with the existing transcript.
|
121 |
-
|
122 |
-
:param transcript: Existing transcript dictionary.
|
123 |
-
:param new_transcript: New transcript data to merge.
|
124 |
-
:return: Updated transcript dictionary.
|
125 |
-
"""
|
126 |
-
cut_off = transcript["last_cutoff"]
|
127 |
-
transcript["last_cutoff"] = self.MAX_RELIABILITY_CUTOFF - self.STEP_LENGTH
|
128 |
-
|
129 |
-
transcript["words"] = transcript["words"][: len(transcript["words"]) - transcript["not_confirmed"]]
|
130 |
-
transcript["not_confirmed"] = 0
|
131 |
-
first_word = True
|
132 |
-
|
133 |
-
for word_dict in new_transcript:
|
134 |
-
if word_dict["start"] >= cut_off:
|
135 |
-
if first_word:
|
136 |
-
if len(transcript["words"]) > 0 and transcript["words"][-1] == word_dict["word"]:
|
137 |
-
continue
|
138 |
-
first_word = False
|
139 |
-
transcript["words"].append(word_dict["word"])
|
140 |
-
if word_dict["start"] > self.MAX_RELIABILITY_CUTOFF:
|
141 |
-
transcript["not_confirmed"] += 1
|
142 |
-
else:
|
143 |
-
transcript["last_cutoff"] = max(1.0, word_dict["end"] - self.STEP_LENGTH)
|
144 |
-
|
145 |
-
transcript["text"] = " ".join(transcript["words"])
|
146 |
-
return transcript
|
147 |
-
|
148 |
def transcribe_numpy_array(self, audio: np.ndarray, context: Optional[str] = None) -> str:
|
149 |
"""
|
150 |
Convert speech to text from a full audio segment.
|
151 |
|
152 |
:param audio: Tuple containing the sample rate and audio data as numpy array.
|
|
|
153 |
:return: Transcribed text.
|
154 |
"""
|
155 |
audio_bytes = self.numpy_audio_to_bytes(audio)
|
@@ -183,19 +132,7 @@ class STTManager:
|
|
183 |
:return: True if the STT service is working, False otherwise.
|
184 |
"""
|
185 |
try:
|
186 |
-
self.
|
187 |
-
return True
|
188 |
-
except:
|
189 |
-
return False
|
190 |
-
|
191 |
-
def test_streaming(self) -> bool:
|
192 |
-
"""
|
193 |
-
Test if the STT streaming service is working correctly.
|
194 |
-
|
195 |
-
:return: True if the STT streaming service is working, False otherwise.
|
196 |
-
"""
|
197 |
-
try:
|
198 |
-
self.speech_to_text_stream(self.numpy_audio_to_bytes(np.zeros(10000)))
|
199 |
return True
|
200 |
except:
|
201 |
return False
|
|
|
41 |
|
42 |
self.config = config
|
43 |
self.status = self.test_stt()
|
44 |
+
self.streaming = self.status
|
45 |
|
46 |
def numpy_audio_to_bytes(self, audio_data: np.ndarray) -> bytes:
|
47 |
"""
|
|
|
70 |
|
71 |
:param audio: Tuple containing the sample rate and audio data as numpy array.
|
72 |
:param audio_buffer: Current audio buffer as numpy array.
|
73 |
+
:return: Updated current audio buffer, audio for transcription
|
|
|
74 |
"""
|
75 |
|
76 |
has_voice = detect_voice(audio[1])
|
|
|
86 |
|
87 |
return np.array([], dtype=np.int16), audio_buffer
|
88 |
|
89 |
+
def transcribe_audio(self, audio: np.ndarray, text: str = "") -> str:
|
90 |
if len(audio) < 500:
|
91 |
return text
|
92 |
else:
|
93 |
transcript = self.transcribe_numpy_array(audio, context=text)
|
94 |
return text + " " + transcript
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def transcribe_numpy_array(self, audio: np.ndarray, context: Optional[str] = None) -> str:
|
97 |
"""
|
98 |
Convert speech to text from a full audio segment.
|
99 |
|
100 |
:param audio: Tuple containing the sample rate and audio data as numpy array.
|
101 |
+
:param context: Optional context for the transcription.
|
102 |
:return: Transcribed text.
|
103 |
"""
|
104 |
audio_bytes = self.numpy_audio_to_bytes(audio)
|
|
|
132 |
:return: True if the STT service is working, False otherwise.
|
133 |
"""
|
134 |
try:
|
135 |
+
self.transcribe_audio(np.zeros(10000))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
return True
|
137 |
except:
|
138 |
return False
|