Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
IliaLarchenko
commited on
Commit
·
e12b285
1
Parent(s):
81629c5
Huge refactoring
Browse files- api/audio.py +107 -37
- api/llm.py +59 -80
- app.py +40 -30
- tests/analysis.py +93 -60
- tests/candidate.py +25 -6
- tests/grader.py +82 -30
- tests/test_e2e.py +14 -4
- tests/test_models.py +20 -7
- ui/coding.py +1 -0
- utils/config.py +20 -10
api/audio.py
CHANGED
@@ -7,6 +7,7 @@ import requests
|
|
7 |
from openai import OpenAI
|
8 |
|
9 |
from utils.errors import APIError, AudioConversionError
|
|
|
10 |
|
11 |
|
12 |
class STTManager:
|
@@ -20,7 +21,13 @@ class STTManager:
|
|
20 |
self.status = self.test_stt()
|
21 |
self.streaming = self.test_streaming()
|
22 |
|
23 |
-
def numpy_audio_to_bytes(self, audio_data):
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
num_channels = 1
|
25 |
sampwidth = 2
|
26 |
|
@@ -35,20 +42,34 @@ class STTManager:
|
|
35 |
raise AudioConversionError(f"Error converting numpy array to audio bytes: {e}")
|
36 |
return buffer.getvalue()
|
37 |
|
38 |
-
def process_audio_chunk(
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
audio_buffer = np.concatenate((audio_buffer, audio[1]))
|
41 |
|
42 |
if len(audio_buffer) >= self.SAMPLE_RATE * self.CHUNK_LENGTH or len(audio_buffer) % (self.SAMPLE_RATE // 2) != 0:
|
43 |
audio_bytes = self.numpy_audio_to_bytes(audio_buffer[: self.SAMPLE_RATE * self.CHUNK_LENGTH])
|
44 |
audio_buffer = audio_buffer[self.SAMPLE_RATE * self.STEP_LENGTH :]
|
45 |
-
|
46 |
new_transcript = self.speech_to_text_stream(audio_bytes)
|
47 |
transcript = self.merge_transcript(transcript, new_transcript)
|
48 |
|
49 |
return transcript, audio_buffer, transcript["text"]
|
50 |
|
51 |
-
def speech_to_text_stream(self, audio):
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
if self.config.stt.type == "HF_API":
|
53 |
raise APIError("STT Error: Streaming not supported for this STT type")
|
54 |
try:
|
@@ -57,18 +78,24 @@ class STTManager:
|
|
57 |
transcription = client.audio.transcriptions.create(
|
58 |
model=self.config.stt.name, file=data, response_format="verbose_json", timestamp_granularities=["word"]
|
59 |
)
|
60 |
-
except APIError
|
61 |
raise
|
62 |
except Exception as e:
|
63 |
raise APIError(f"STT Error: Unexpected error: {e}")
|
64 |
return transcription.words
|
65 |
|
66 |
-
def merge_transcript(self, transcript, new_transcript):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
cut_off = transcript["last_cutoff"]
|
68 |
transcript["last_cutoff"] = self.MAX_RELIABILITY_CUTOFF - self.STEP_LENGTH
|
69 |
|
70 |
transcript["words"] = transcript["words"][: len(transcript["words"]) - transcript["not_confirmed"]]
|
71 |
-
|
72 |
transcript["not_confirmed"] = 0
|
73 |
first_word = True
|
74 |
|
@@ -85,40 +112,55 @@ class STTManager:
|
|
85 |
transcript["last_cutoff"] = max(1.0, word_dict["end"] - self.STEP_LENGTH)
|
86 |
|
87 |
transcript["text"] = " ".join(transcript["words"])
|
88 |
-
|
89 |
return transcript
|
90 |
|
91 |
-
def speech_to_text_full(self, audio):
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
try:
|
94 |
if self.config.stt.type == "OPENAI_API":
|
95 |
-
data = ("temp.wav",
|
96 |
client = OpenAI(base_url=self.config.stt.url, api_key=self.config.stt.key)
|
97 |
transcription = client.audio.transcriptions.create(model=self.config.stt.name, file=data, response_format="text")
|
98 |
elif self.config.stt.type == "HF_API":
|
99 |
headers = {"Authorization": "Bearer " + self.config.stt.key}
|
100 |
-
response = requests.post(self.config.stt.url, headers=headers, data=
|
101 |
if response.status_code != 200:
|
102 |
error_details = response.json().get("error", "No error message provided")
|
103 |
raise APIError("STT Error: HF API error", status_code=response.status_code, details=error_details)
|
104 |
transcription = response.json().get("text", None)
|
105 |
if transcription is None:
|
106 |
raise APIError("STT Error: No transcription returned by HF API")
|
107 |
-
except APIError
|
108 |
raise
|
109 |
except Exception as e:
|
110 |
raise APIError(f"STT Error: Unexpected error: {e}")
|
111 |
|
112 |
return transcription
|
113 |
|
114 |
-
def test_stt(self):
|
|
|
|
|
|
|
|
|
|
|
115 |
try:
|
116 |
self.speech_to_text_full((48000, np.zeros(10000)))
|
117 |
return True
|
118 |
except:
|
119 |
return False
|
120 |
|
121 |
-
def test_streaming(self):
|
|
|
|
|
|
|
|
|
|
|
122 |
try:
|
123 |
self.speech_to_text_stream(self.numpy_audio_to_bytes(np.zeros(10000)))
|
124 |
return True
|
@@ -127,14 +169,30 @@ class STTManager:
|
|
127 |
|
128 |
|
129 |
class TTSManager:
|
130 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
try:
|
132 |
self.read_text("Handshake")
|
133 |
return True
|
134 |
except:
|
135 |
return False
|
136 |
|
137 |
-
def test_tts_stream(self):
|
|
|
|
|
|
|
|
|
|
|
138 |
try:
|
139 |
for _ in self.read_text_stream("Handshake"):
|
140 |
pass
|
@@ -142,19 +200,13 @@ class TTSManager:
|
|
142 |
except:
|
143 |
return False
|
144 |
|
145 |
-
def
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
if self.streaming:
|
153 |
-
self.read_last_message = self.rlm_stream
|
154 |
-
else:
|
155 |
-
self.read_last_message = self.rlm
|
156 |
-
|
157 |
-
def read_text(self, text):
|
158 |
headers = {"Authorization": "Bearer " + self.config.tts.key}
|
159 |
try:
|
160 |
if self.config.tts.type == "OPENAI_API":
|
@@ -165,15 +217,21 @@ class TTSManager:
|
|
165 |
if response.status_code != 200:
|
166 |
error_details = response.json().get("error", "No error message provided")
|
167 |
raise APIError(f"TTS Error: {self.config.tts.type} error", status_code=response.status_code, details=error_details)
|
168 |
-
except APIError
|
169 |
raise
|
170 |
except Exception as e:
|
171 |
raise APIError(f"TTS Error: Unexpected error: {e}")
|
172 |
|
173 |
return response.content
|
174 |
|
175 |
-
def read_text_stream(self, text):
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
raise APIError("TTS Error: Streaming not supported for this TTS type")
|
178 |
headers = {"Authorization": "Bearer " + self.config.tts.key}
|
179 |
data = {"model": self.config.tts.name, "input": text, "voice": "alloy", "response_format": "opus"}
|
@@ -187,15 +245,27 @@ class TTSManager:
|
|
187 |
yield from response.iter_content(chunk_size=1024)
|
188 |
except StopIteration:
|
189 |
pass
|
190 |
-
except APIError
|
191 |
raise
|
192 |
except Exception as e:
|
193 |
raise APIError(f"TTS Error: Unexpected error: {e}")
|
194 |
|
195 |
-
def rlm(self, chat_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
if len(chat_history) > 0 and chat_history[-1][1]:
|
197 |
return self.read_text(chat_history[-1][1])
|
198 |
|
199 |
-
def rlm_stream(self, chat_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
if len(chat_history) > 0 and chat_history[-1][1]:
|
201 |
yield from self.read_text_stream(chat_history[-1][1])
|
|
|
7 |
from openai import OpenAI
|
8 |
|
9 |
from utils.errors import APIError, AudioConversionError
|
10 |
+
from typing import List, Dict, Optional, Generator, Tuple
|
11 |
|
12 |
|
13 |
class STTManager:
|
|
|
21 |
self.status = self.test_stt()
|
22 |
self.streaming = self.test_streaming()
|
23 |
|
24 |
+
def numpy_audio_to_bytes(self, audio_data: np.ndarray) -> bytes:
|
25 |
+
"""
|
26 |
+
Convert a numpy array of audio data to bytes.
|
27 |
+
|
28 |
+
:param audio_data: Numpy array containing audio data.
|
29 |
+
:return: Bytes representation of the audio data.
|
30 |
+
"""
|
31 |
num_channels = 1
|
32 |
sampwidth = 2
|
33 |
|
|
|
42 |
raise AudioConversionError(f"Error converting numpy array to audio bytes: {e}")
|
43 |
return buffer.getvalue()
|
44 |
|
45 |
+
def process_audio_chunk(
|
46 |
+
self, audio: Tuple[int, np.ndarray], audio_buffer: np.ndarray, transcript: Dict
|
47 |
+
) -> Tuple[Dict, np.ndarray, str]:
|
48 |
+
"""
|
49 |
+
Process streamed audio data to accumulate and transcribe with overlapping segments.
|
50 |
+
|
51 |
+
:param audio: Tuple containing the sample rate and audio data as numpy array.
|
52 |
+
:param audio_buffer: Current audio buffer as numpy array.
|
53 |
+
:param transcript: Current transcript dictionary.
|
54 |
+
:return: Updated transcript, updated audio buffer, and transcript text.
|
55 |
+
"""
|
56 |
audio_buffer = np.concatenate((audio_buffer, audio[1]))
|
57 |
|
58 |
if len(audio_buffer) >= self.SAMPLE_RATE * self.CHUNK_LENGTH or len(audio_buffer) % (self.SAMPLE_RATE // 2) != 0:
|
59 |
audio_bytes = self.numpy_audio_to_bytes(audio_buffer[: self.SAMPLE_RATE * self.CHUNK_LENGTH])
|
60 |
audio_buffer = audio_buffer[self.SAMPLE_RATE * self.STEP_LENGTH :]
|
|
|
61 |
new_transcript = self.speech_to_text_stream(audio_bytes)
|
62 |
transcript = self.merge_transcript(transcript, new_transcript)
|
63 |
|
64 |
return transcript, audio_buffer, transcript["text"]
|
65 |
|
66 |
+
def speech_to_text_stream(self, audio: bytes) -> List[Dict[str, str]]:
|
67 |
+
"""
|
68 |
+
Convert speech to text from a byte stream using streaming.
|
69 |
+
|
70 |
+
:param audio: Bytes representation of audio data.
|
71 |
+
:return: List of dictionaries containing transcribed words and their timestamps.
|
72 |
+
"""
|
73 |
if self.config.stt.type == "HF_API":
|
74 |
raise APIError("STT Error: Streaming not supported for this STT type")
|
75 |
try:
|
|
|
78 |
transcription = client.audio.transcriptions.create(
|
79 |
model=self.config.stt.name, file=data, response_format="verbose_json", timestamp_granularities=["word"]
|
80 |
)
|
81 |
+
except APIError:
|
82 |
raise
|
83 |
except Exception as e:
|
84 |
raise APIError(f"STT Error: Unexpected error: {e}")
|
85 |
return transcription.words
|
86 |
|
87 |
+
def merge_transcript(self, transcript: Dict, new_transcript: List[Dict[str, str]]) -> Dict:
|
88 |
+
"""
|
89 |
+
Merge new transcript data with the existing transcript.
|
90 |
+
|
91 |
+
:param transcript: Existing transcript dictionary.
|
92 |
+
:param new_transcript: New transcript data to merge.
|
93 |
+
:return: Updated transcript dictionary.
|
94 |
+
"""
|
95 |
cut_off = transcript["last_cutoff"]
|
96 |
transcript["last_cutoff"] = self.MAX_RELIABILITY_CUTOFF - self.STEP_LENGTH
|
97 |
|
98 |
transcript["words"] = transcript["words"][: len(transcript["words"]) - transcript["not_confirmed"]]
|
|
|
99 |
transcript["not_confirmed"] = 0
|
100 |
first_word = True
|
101 |
|
|
|
112 |
transcript["last_cutoff"] = max(1.0, word_dict["end"] - self.STEP_LENGTH)
|
113 |
|
114 |
transcript["text"] = " ".join(transcript["words"])
|
|
|
115 |
return transcript
|
116 |
|
117 |
+
def speech_to_text_full(self, audio: Tuple[int, np.ndarray]) -> str:
|
118 |
+
"""
|
119 |
+
Convert speech to text from a full audio segment.
|
120 |
+
|
121 |
+
:param audio: Tuple containing the sample rate and audio data as numpy array.
|
122 |
+
:return: Transcribed text.
|
123 |
+
"""
|
124 |
+
audio_bytes = self.numpy_audio_to_bytes(audio[1])
|
125 |
try:
|
126 |
if self.config.stt.type == "OPENAI_API":
|
127 |
+
data = ("temp.wav", audio_bytes, "audio/wav")
|
128 |
client = OpenAI(base_url=self.config.stt.url, api_key=self.config.stt.key)
|
129 |
transcription = client.audio.transcriptions.create(model=self.config.stt.name, file=data, response_format="text")
|
130 |
elif self.config.stt.type == "HF_API":
|
131 |
headers = {"Authorization": "Bearer " + self.config.stt.key}
|
132 |
+
response = requests.post(self.config.stt.url, headers=headers, data=audio_bytes)
|
133 |
if response.status_code != 200:
|
134 |
error_details = response.json().get("error", "No error message provided")
|
135 |
raise APIError("STT Error: HF API error", status_code=response.status_code, details=error_details)
|
136 |
transcription = response.json().get("text", None)
|
137 |
if transcription is None:
|
138 |
raise APIError("STT Error: No transcription returned by HF API")
|
139 |
+
except APIError:
|
140 |
raise
|
141 |
except Exception as e:
|
142 |
raise APIError(f"STT Error: Unexpected error: {e}")
|
143 |
|
144 |
return transcription
|
145 |
|
146 |
+
def test_stt(self) -> bool:
|
147 |
+
"""
|
148 |
+
Test if the STT service is working correctly.
|
149 |
+
|
150 |
+
:return: True if the STT service is working, False otherwise.
|
151 |
+
"""
|
152 |
try:
|
153 |
self.speech_to_text_full((48000, np.zeros(10000)))
|
154 |
return True
|
155 |
except:
|
156 |
return False
|
157 |
|
158 |
+
def test_streaming(self) -> bool:
|
159 |
+
"""
|
160 |
+
Test if the STT streaming service is working correctly.
|
161 |
+
|
162 |
+
:return: True if the STT streaming service is working, False otherwise.
|
163 |
+
"""
|
164 |
try:
|
165 |
self.speech_to_text_stream(self.numpy_audio_to_bytes(np.zeros(10000)))
|
166 |
return True
|
|
|
169 |
|
170 |
|
171 |
class TTSManager:
|
172 |
+
def __init__(self, config):
|
173 |
+
self.config = config
|
174 |
+
self.status = self.test_tts()
|
175 |
+
self.streaming = self.test_tts_stream() if self.status else False
|
176 |
+
self.read_last_message = self.rlm_stream if self.streaming else self.rlm
|
177 |
+
|
178 |
+
def test_tts(self) -> bool:
|
179 |
+
"""
|
180 |
+
Test if the TTS service is working correctly.
|
181 |
+
|
182 |
+
:return: True if the TTS service is working, False otherwise.
|
183 |
+
"""
|
184 |
try:
|
185 |
self.read_text("Handshake")
|
186 |
return True
|
187 |
except:
|
188 |
return False
|
189 |
|
190 |
+
def test_tts_stream(self) -> bool:
|
191 |
+
"""
|
192 |
+
Test if the TTS streaming service is working correctly.
|
193 |
+
|
194 |
+
:return: True if the TTS streaming service is working, False otherwise.
|
195 |
+
"""
|
196 |
try:
|
197 |
for _ in self.read_text_stream("Handshake"):
|
198 |
pass
|
|
|
200 |
except:
|
201 |
return False
|
202 |
|
203 |
+
def read_text(self, text: str) -> bytes:
|
204 |
+
"""
|
205 |
+
Convert text to speech and return the audio bytes.
|
206 |
+
|
207 |
+
:param text: Text to convert to speech.
|
208 |
+
:return: Bytes representation of the audio.
|
209 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
headers = {"Authorization": "Bearer " + self.config.tts.key}
|
211 |
try:
|
212 |
if self.config.tts.type == "OPENAI_API":
|
|
|
217 |
if response.status_code != 200:
|
218 |
error_details = response.json().get("error", "No error message provided")
|
219 |
raise APIError(f"TTS Error: {self.config.tts.type} error", status_code=response.status_code, details=error_details)
|
220 |
+
except APIError:
|
221 |
raise
|
222 |
except Exception as e:
|
223 |
raise APIError(f"TTS Error: Unexpected error: {e}")
|
224 |
|
225 |
return response.content
|
226 |
|
227 |
+
def read_text_stream(self, text: str) -> Generator[bytes, None, None]:
|
228 |
+
"""
|
229 |
+
Convert text to speech using streaming and return the audio bytes.
|
230 |
+
|
231 |
+
:param text: Text to convert to speech.
|
232 |
+
:return: Generator yielding chunks of audio bytes.
|
233 |
+
"""
|
234 |
+
if self.config.tts.type != "OPENAI_API":
|
235 |
raise APIError("TTS Error: Streaming not supported for this TTS type")
|
236 |
headers = {"Authorization": "Bearer " + self.config.tts.key}
|
237 |
data = {"model": self.config.tts.name, "input": text, "voice": "alloy", "response_format": "opus"}
|
|
|
245 |
yield from response.iter_content(chunk_size=1024)
|
246 |
except StopIteration:
|
247 |
pass
|
248 |
+
except APIError:
|
249 |
raise
|
250 |
except Exception as e:
|
251 |
raise APIError(f"TTS Error: Unexpected error: {e}")
|
252 |
|
253 |
+
def rlm(self, chat_history: List[List[Optional[str]]]) -> bytes:
|
254 |
+
"""
|
255 |
+
Read the last message in the chat history and convert it to speech.
|
256 |
+
|
257 |
+
:param chat_history: List of chat messages.
|
258 |
+
:return: Bytes representation of the audio.
|
259 |
+
"""
|
260 |
if len(chat_history) > 0 and chat_history[-1][1]:
|
261 |
return self.read_text(chat_history[-1][1])
|
262 |
|
263 |
+
def rlm_stream(self, chat_history: List[List[Optional[str]]]) -> Generator[bytes, None, None]:
|
264 |
+
"""
|
265 |
+
Read the last message in the chat history and convert it to speech using streaming.
|
266 |
+
|
267 |
+
:param chat_history: List of chat messages.
|
268 |
+
:return: Generator yielding chunks of audio bytes.
|
269 |
+
"""
|
270 |
if len(chat_history) > 0 and chat_history[-1][1]:
|
271 |
yield from self.read_text_stream(chat_history[-1][1])
|
api/llm.py
CHANGED
@@ -1,40 +1,38 @@
|
|
1 |
import os
|
2 |
-
|
3 |
from openai import OpenAI
|
4 |
-
|
5 |
from utils.errors import APIError
|
|
|
6 |
|
7 |
|
8 |
class PromptManager:
|
9 |
-
def __init__(self, prompts):
|
10 |
self.prompts = prompts
|
11 |
self.limit = os.getenv("DEMO_WORD_LIMIT")
|
12 |
|
13 |
-
def add_limit(self, prompt):
|
14 |
if self.limit:
|
15 |
prompt += f" Keep your responses very short and simple, no more than {self.limit} words."
|
16 |
return prompt
|
17 |
|
18 |
-
def get_system_prompt(self, key):
|
19 |
prompt = self.prompts[key]
|
20 |
return self.add_limit(prompt)
|
21 |
|
22 |
-
def get_problem_requirements_prompt(
|
23 |
-
|
|
|
|
|
24 |
return self.add_limit(prompt)
|
25 |
|
26 |
|
27 |
class LLMManager:
|
28 |
-
def __init__(self, config, prompts):
|
29 |
self.config = config
|
30 |
self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key)
|
31 |
self.prompt_manager = PromptManager(prompts)
|
32 |
|
33 |
self.status = self.test_llm()
|
34 |
-
if self.status
|
35 |
-
self.streaming = self.test_llm_stream()
|
36 |
-
else:
|
37 |
-
self.streaming = False
|
38 |
|
39 |
if self.streaming:
|
40 |
self.end_interview = self.end_interview_stream
|
@@ -45,19 +43,7 @@ class LLMManager:
|
|
45 |
self.get_problem = self.get_problem_full
|
46 |
self.send_request = self.send_request_full
|
47 |
|
48 |
-
def
|
49 |
-
def ans_full(response):
|
50 |
-
return response
|
51 |
-
|
52 |
-
def ans_stream(response):
|
53 |
-
yield from response
|
54 |
-
|
55 |
-
if self.streaming:
|
56 |
-
return ans_full
|
57 |
-
else:
|
58 |
-
return ans_stream
|
59 |
-
|
60 |
-
def get_text(self, messages):
|
61 |
try:
|
62 |
response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1, max_tokens=2000)
|
63 |
if not response.choices:
|
@@ -66,14 +52,10 @@ class LLMManager:
|
|
66 |
except Exception as e:
|
67 |
raise APIError(f"LLM Get Text Error: Unexpected error: {e}")
|
68 |
|
69 |
-
def get_text_stream(self, messages):
|
70 |
try:
|
71 |
response = self.client.chat.completions.create(
|
72 |
-
model=self.config.llm.name,
|
73 |
-
messages=messages,
|
74 |
-
temperature=1,
|
75 |
-
stream=True,
|
76 |
-
max_tokens=2000,
|
77 |
)
|
78 |
except Exception as e:
|
79 |
raise APIError(f"LLM End Interview Error: Unexpected error: {e}")
|
@@ -83,110 +65,107 @@ class LLMManager:
|
|
83 |
text += chunk.choices[0].delta.content
|
84 |
yield text
|
85 |
|
86 |
-
|
87 |
-
{"role": "system", "content": "You just help me test the connection."},
|
88 |
-
{"role": "user", "content": "Hi!"},
|
89 |
-
{"role": "user", "content": "Ping!"},
|
90 |
-
]
|
91 |
-
|
92 |
-
def test_llm(self):
|
93 |
try:
|
94 |
-
self.get_text(
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
return True
|
96 |
except:
|
97 |
return False
|
98 |
|
99 |
-
def test_llm_stream(self):
|
100 |
try:
|
101 |
-
for _ in self.get_text_stream(
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
pass
|
103 |
return True
|
104 |
except:
|
105 |
return False
|
106 |
|
107 |
-
def init_bot(self, problem, interview_type="coding"):
|
108 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt")
|
|
|
109 |
|
110 |
-
|
111 |
-
{"role": "system", "content": system_prompt + f"\nThe candidate is solving the following problem:\n {problem}"},
|
112 |
-
]
|
113 |
-
|
114 |
-
def get_problem_prepare_messages(self, requirements, difficulty, topic, interview_type):
|
115 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt")
|
116 |
full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements)
|
117 |
-
|
118 |
-
messages = [
|
119 |
{"role": "system", "content": system_prompt},
|
120 |
{"role": "user", "content": full_prompt},
|
121 |
]
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
def get_problem_full(self, requirements, difficulty, topic, interview_type="coding"):
|
126 |
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
|
127 |
return self.get_text(messages)
|
128 |
|
129 |
-
def get_problem_stream(
|
|
|
|
|
130 |
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
|
131 |
yield from self.get_text_stream(messages)
|
132 |
|
133 |
-
def update_chat_history(
|
|
|
|
|
134 |
message = chat_display[-1][0]
|
135 |
-
|
136 |
if code != previous_code:
|
137 |
-
message += "\nMY NOTES AND CODE:\n"
|
138 |
-
message += code
|
139 |
-
|
140 |
chat_history.append({"role": "user", "content": message})
|
141 |
-
|
142 |
return chat_history
|
143 |
|
144 |
-
def send_request_full(
|
|
|
|
|
145 |
chat_history = self.update_chat_history(code, previous_code, chat_history, chat_display)
|
146 |
-
|
147 |
reply = self.get_text(chat_history)
|
148 |
chat_display.append([None, reply.split("#NOTES#")[0].strip()])
|
149 |
chat_history.append({"role": "assistant", "content": reply})
|
150 |
-
|
151 |
return chat_history, chat_display, code
|
152 |
|
153 |
-
def send_request_stream(
|
|
|
|
|
154 |
chat_history = self.update_chat_history(code, previous_code, chat_history, chat_display)
|
155 |
-
|
156 |
chat_display.append([None, ""])
|
157 |
chat_history.append({"role": "assistant", "content": ""})
|
158 |
-
|
159 |
reply = self.get_text_stream(chat_history)
|
160 |
for message in reply:
|
161 |
chat_display[-1][1] = message.split("#NOTES#")[0].strip()
|
162 |
chat_history[-1]["content"] = message
|
163 |
-
|
164 |
yield chat_history, chat_display, code
|
165 |
|
166 |
-
def end_interview_prepare_messages(
|
|
|
|
|
167 |
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
|
168 |
-
|
169 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt")
|
170 |
-
|
171 |
-
messages = [
|
172 |
{"role": "system", "content": system_prompt},
|
173 |
{"role": "user", "content": f"The original problem to solve: {problem_description}"},
|
174 |
{"role": "user", "content": "\n\n".join(transcript)},
|
175 |
{"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."},
|
176 |
]
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
def end_interview_full(self, problem_description, chat_history, interview_type="coding"):
|
181 |
if len(chat_history) <= 2:
|
182 |
return "No interview history available"
|
183 |
-
|
184 |
-
|
185 |
-
return self.get_text(messages)
|
186 |
|
187 |
-
def end_interview_stream(
|
|
|
|
|
188 |
if len(chat_history) <= 2:
|
189 |
yield "No interview history available"
|
190 |
-
|
191 |
-
|
192 |
-
yield from self.get_text_stream(messages)
|
|
|
1 |
import os
|
|
|
2 |
from openai import OpenAI
|
|
|
3 |
from utils.errors import APIError
|
4 |
+
from typing import List, Dict, Generator, Optional, Tuple
|
5 |
|
6 |
|
7 |
class PromptManager:
|
8 |
+
def __init__(self, prompts: Dict[str, str]):
|
9 |
self.prompts = prompts
|
10 |
self.limit = os.getenv("DEMO_WORD_LIMIT")
|
11 |
|
12 |
+
def add_limit(self, prompt: str) -> str:
|
13 |
if self.limit:
|
14 |
prompt += f" Keep your responses very short and simple, no more than {self.limit} words."
|
15 |
return prompt
|
16 |
|
17 |
+
def get_system_prompt(self, key: str) -> str:
|
18 |
prompt = self.prompts[key]
|
19 |
return self.add_limit(prompt)
|
20 |
|
21 |
+
def get_problem_requirements_prompt(
|
22 |
+
self, type: str, difficulty: Optional[str] = None, topic: Optional[str] = None, requirements: Optional[str] = None
|
23 |
+
) -> str:
|
24 |
+
prompt = f"Create a {type} problem. Difficulty: {difficulty}. Topic: {topic} Additional requirements: {requirements}. "
|
25 |
return self.add_limit(prompt)
|
26 |
|
27 |
|
28 |
class LLMManager:
|
29 |
+
def __init__(self, config, prompts: Dict[str, str]):
|
30 |
self.config = config
|
31 |
self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key)
|
32 |
self.prompt_manager = PromptManager(prompts)
|
33 |
|
34 |
self.status = self.test_llm()
|
35 |
+
self.streaming = self.test_llm_stream() if self.status else False
|
|
|
|
|
|
|
36 |
|
37 |
if self.streaming:
|
38 |
self.end_interview = self.end_interview_stream
|
|
|
43 |
self.get_problem = self.get_problem_full
|
44 |
self.send_request = self.send_request_full
|
45 |
|
46 |
+
def get_text(self, messages: List[Dict[str, str]]) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
try:
|
48 |
response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1, max_tokens=2000)
|
49 |
if not response.choices:
|
|
|
52 |
except Exception as e:
|
53 |
raise APIError(f"LLM Get Text Error: Unexpected error: {e}")
|
54 |
|
55 |
+
def get_text_stream(self, messages: List[Dict[str, str]]) -> Generator[str, None, None]:
|
56 |
try:
|
57 |
response = self.client.chat.completions.create(
|
58 |
+
model=self.config.llm.name, messages=messages, temperature=1, stream=True, max_tokens=2000
|
|
|
|
|
|
|
|
|
59 |
)
|
60 |
except Exception as e:
|
61 |
raise APIError(f"LLM End Interview Error: Unexpected error: {e}")
|
|
|
65 |
text += chunk.choices[0].delta.content
|
66 |
yield text
|
67 |
|
68 |
+
def test_llm(self) -> bool:
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
try:
|
70 |
+
self.get_text(
|
71 |
+
[
|
72 |
+
{"role": "system", "content": "You just help me test the connection."},
|
73 |
+
{"role": "user", "content": "Hi!"},
|
74 |
+
{"role": "user", "content": "Ping!"},
|
75 |
+
]
|
76 |
+
)
|
77 |
return True
|
78 |
except:
|
79 |
return False
|
80 |
|
81 |
+
def test_llm_stream(self) -> bool:
|
82 |
try:
|
83 |
+
for _ in self.get_text_stream(
|
84 |
+
[
|
85 |
+
{"role": "system", "content": "You just help me test the connection."},
|
86 |
+
{"role": "user", "content": "Hi!"},
|
87 |
+
{"role": "user", "content": "Ping!"},
|
88 |
+
]
|
89 |
+
):
|
90 |
pass
|
91 |
return True
|
92 |
except:
|
93 |
return False
|
94 |
|
95 |
+
def init_bot(self, problem: str, interview_type: str = "coding") -> List[Dict[str, str]]:
|
96 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt")
|
97 |
+
return [{"role": "system", "content": f"{system_prompt}\nThe candidate is solving the following problem:\n {problem}"}]
|
98 |
|
99 |
+
def get_problem_prepare_messages(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> List[Dict[str, str]]:
|
|
|
|
|
|
|
|
|
100 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt")
|
101 |
full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements)
|
102 |
+
return [
|
|
|
103 |
{"role": "system", "content": system_prompt},
|
104 |
{"role": "user", "content": full_prompt},
|
105 |
]
|
106 |
|
107 |
+
def get_problem_full(self, requirements: str, difficulty: str, topic: str, interview_type: str = "coding") -> str:
|
|
|
|
|
108 |
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
|
109 |
return self.get_text(messages)
|
110 |
|
111 |
+
def get_problem_stream(
|
112 |
+
self, requirements: str, difficulty: str, topic: str, interview_type: str = "coding"
|
113 |
+
) -> Generator[str, None, None]:
|
114 |
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
|
115 |
yield from self.get_text_stream(messages)
|
116 |
|
117 |
+
def update_chat_history(
|
118 |
+
self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]]
|
119 |
+
) -> List[Dict[str, str]]:
|
120 |
message = chat_display[-1][0]
|
|
|
121 |
if code != previous_code:
|
122 |
+
message += "\nMY NOTES AND CODE:\n" + code
|
|
|
|
|
123 |
chat_history.append({"role": "user", "content": message})
|
|
|
124 |
return chat_history
|
125 |
|
126 |
+
def send_request_full(
|
127 |
+
self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]]
|
128 |
+
) -> Tuple[List[Dict[str, str]], List[List[Optional[str]]], str]:
|
129 |
chat_history = self.update_chat_history(code, previous_code, chat_history, chat_display)
|
|
|
130 |
reply = self.get_text(chat_history)
|
131 |
chat_display.append([None, reply.split("#NOTES#")[0].strip()])
|
132 |
chat_history.append({"role": "assistant", "content": reply})
|
|
|
133 |
return chat_history, chat_display, code
|
134 |
|
135 |
+
def send_request_stream(
|
136 |
+
self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]]
|
137 |
+
) -> Generator[Tuple[List[Dict[str, str]], List[List[Optional[str]]], str], None, None]:
|
138 |
chat_history = self.update_chat_history(code, previous_code, chat_history, chat_display)
|
|
|
139 |
chat_display.append([None, ""])
|
140 |
chat_history.append({"role": "assistant", "content": ""})
|
|
|
141 |
reply = self.get_text_stream(chat_history)
|
142 |
for message in reply:
|
143 |
chat_display[-1][1] = message.split("#NOTES#")[0].strip()
|
144 |
chat_history[-1]["content"] = message
|
|
|
145 |
yield chat_history, chat_display, code
|
146 |
|
147 |
+
def end_interview_prepare_messages(
|
148 |
+
self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str
|
149 |
+
) -> List[Dict[str, str]]:
|
150 |
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
|
|
|
151 |
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt")
|
152 |
+
return [
|
|
|
153 |
{"role": "system", "content": system_prompt},
|
154 |
{"role": "user", "content": f"The original problem to solve: {problem_description}"},
|
155 |
{"role": "user", "content": "\n\n".join(transcript)},
|
156 |
{"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."},
|
157 |
]
|
158 |
|
159 |
+
def end_interview_full(self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str = "coding") -> str:
|
|
|
|
|
160 |
if len(chat_history) <= 2:
|
161 |
return "No interview history available"
|
162 |
+
messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type)
|
163 |
+
return self.get_text(messages)
|
|
|
164 |
|
165 |
+
def end_interview_stream(
|
166 |
+
self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str = "coding"
|
167 |
+
) -> Generator[str, None, None]:
|
168 |
if len(chat_history) <= 2:
|
169 |
yield "No interview history available"
|
170 |
+
messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type)
|
171 |
+
yield from self.get_text_stream(messages)
|
|
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import gradio as gr
|
4 |
|
5 |
from api.audio import STTManager, TTSManager
|
@@ -10,33 +9,44 @@ from ui.coding import get_problem_solving_ui
|
|
10 |
from ui.instructions import get_instructions_ui
|
11 |
from utils.params import default_audio_params
|
12 |
|
13 |
-
config = Config()
|
14 |
-
llm = LLMManager(config, prompts)
|
15 |
-
tts = TTSManager(config)
|
16 |
-
stt = STTManager(config)
|
17 |
-
|
18 |
-
default_audio_params["streaming"] = stt.streaming
|
19 |
-
|
20 |
-
if os.getenv("SILENT", False):
|
21 |
-
tts.read_last_message = lambda x: None
|
22 |
-
|
23 |
-
# Interface
|
24 |
-
|
25 |
-
with gr.Blocks(title="AI Interviewer") as demo:
|
26 |
-
audio_output = gr.Audio(label="Play audio", autoplay=True, visible=os.environ.get("DEBUG", False), streaming=tts.streaming)
|
27 |
-
tabs = [
|
28 |
-
get_instructions_ui(llm, tts, stt, default_audio_params),
|
29 |
-
get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output, name="Coding", interview_type="coding"),
|
30 |
-
get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output, name="ML Design (Beta)", interview_type="ml_design"),
|
31 |
-
get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output, name="ML Theory (Beta)", interview_type="ml_theory"),
|
32 |
-
get_problem_solving_ui(
|
33 |
-
llm, tts, stt, default_audio_params, audio_output, name="System Design (Beta)", interview_type="system_design"
|
34 |
-
),
|
35 |
-
get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output, name="Math (Beta)", interview_type="math"),
|
36 |
-
get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output, name="SQL (Beta)", interview_type="sql"),
|
37 |
-
]
|
38 |
-
|
39 |
-
for tab in tabs:
|
40 |
-
tab.render()
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
|
4 |
from api.audio import STTManager, TTSManager
|
|
|
9 |
from ui.instructions import get_instructions_ui
|
10 |
from utils.params import default_audio_params
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def initialize_services():
|
14 |
+
"""Initialize configuration, LLM, TTS, and STT services."""
|
15 |
+
config = Config()
|
16 |
+
llm = LLMManager(config, prompts)
|
17 |
+
tts = TTSManager(config)
|
18 |
+
stt = STTManager(config)
|
19 |
+
default_audio_params["streaming"] = stt.streaming
|
20 |
+
if os.getenv("SILENT", False):
|
21 |
+
tts.read_last_message = lambda x: None
|
22 |
+
return config, llm, tts, stt
|
23 |
+
|
24 |
+
|
25 |
+
def create_interface(llm, tts, stt, audio_params):
|
26 |
+
"""Create and configure the Gradio interface."""
|
27 |
+
with gr.Blocks(title="AI Interviewer") as demo:
|
28 |
+
audio_output = gr.Audio(label="Play audio", autoplay=True, visible=os.environ.get("DEBUG", False), streaming=tts.streaming)
|
29 |
+
tabs = [
|
30 |
+
get_instructions_ui(llm, tts, stt, audio_params),
|
31 |
+
get_problem_solving_ui(llm, tts, stt, audio_params, audio_output, name="Coding", interview_type="coding"),
|
32 |
+
get_problem_solving_ui(llm, tts, stt, audio_params, audio_output, name="ML Design (Beta)", interview_type="ml_design"),
|
33 |
+
get_problem_solving_ui(llm, tts, stt, audio_params, audio_output, name="ML Theory (Beta)", interview_type="ml_theory"),
|
34 |
+
get_problem_solving_ui(llm, tts, stt, audio_params, audio_output, name="System Design (Beta)", interview_type="system_design"),
|
35 |
+
get_problem_solving_ui(llm, tts, stt, audio_params, audio_output, name="Math (Beta)", interview_type="math"),
|
36 |
+
get_problem_solving_ui(llm, tts, stt, audio_params, audio_output, name="SQL (Beta)", interview_type="sql"),
|
37 |
+
]
|
38 |
+
|
39 |
+
for tab in tabs:
|
40 |
+
tab.render()
|
41 |
+
return demo
|
42 |
+
|
43 |
+
|
44 |
+
def main():
|
45 |
+
"""Main function to initialize services and launch the Gradio interface."""
|
46 |
+
config, llm, tts, stt = initialize_services()
|
47 |
+
demo = create_interface(llm, tts, stt, default_audio_params)
|
48 |
+
demo.launch(show_api=False)
|
49 |
+
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
main()
|
tests/analysis.py
CHANGED
@@ -15,6 +15,7 @@ from IPython.display import Markdown, display
|
|
15 |
from openai import OpenAI
|
16 |
from tests.testing_prompts import feedback_analyzer
|
17 |
from resources.prompts import prompts, base_prompts
|
|
|
18 |
|
19 |
criteria_list = {
|
20 |
"problem_statement",
|
@@ -65,7 +66,15 @@ criteria_list = {
|
|
65 |
}
|
66 |
|
67 |
|
68 |
-
def grade_attempt(file_path, grader_model, attempt_index):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
for retry in range(3): # Retry mechanism
|
70 |
try:
|
71 |
feedback = grade(file_path, grader_model, str(attempt_index))
|
@@ -76,26 +85,36 @@ def grade_attempt(file_path, grader_model, attempt_index):
|
|
76 |
return None
|
77 |
|
78 |
|
79 |
-
def complete_and_grade(
|
80 |
-
|
|
|
|
|
|
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
feedback_list = []
|
83 |
-
|
84 |
-
|
|
|
85 |
try:
|
86 |
file_path, _ = complete_interview(interview_type, exp_name, llm_config, model=candidate_model, pause=attempt * 5)
|
87 |
print(
|
88 |
f"Attempt {attempt_num + 1}, retry {attempt + 1} interview simulation of {interview_type} by {llm_config.name} completed successfully"
|
89 |
)
|
90 |
-
attempt_successful = True
|
91 |
break
|
92 |
except Exception as e:
|
93 |
print(f"Retry {attempt + 1} for attempt {attempt_num + 1} of {interview_type} by {llm_config.name} failed with error: {e}")
|
94 |
-
|
95 |
-
if not attempt_successful:
|
96 |
print(f"All retries failed for attempt {attempt_num + 1} of {interview_type} by {llm_config.name}")
|
97 |
return feedback_list
|
98 |
|
|
|
99 |
try:
|
100 |
for i, grader_model in enumerate(grader_models):
|
101 |
feedback = grade_attempt(file_path, grader_model, i)
|
@@ -103,19 +122,36 @@ def complete_and_grade(interview_params, exp_name, grader_models, candidate_mode
|
|
103 |
feedback_list.append(feedback)
|
104 |
print(f"Attempt {attempt_num + 1} of {interview_type} by {llm_config.name} graded by {grader_model} successfully")
|
105 |
print(f"Overall score: {feedback['overall_score']}")
|
106 |
-
|
107 |
except Exception as e:
|
108 |
print(f"Grading for attempt {attempt_num + 1} of {interview_type} by {llm_config.name} failed with error: {e}")
|
109 |
|
110 |
-
if
|
111 |
print(f"Attempt {attempt_num + 1} of {interview_type} by {llm_config.name} returned an empty list")
|
112 |
|
113 |
return feedback_list
|
114 |
|
115 |
|
116 |
def run_evaluation(
|
117 |
-
exp_name
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
if interview_types is None:
|
120 |
interview_types = ["ml_design", "math", "ml_theory", "system_design", "sql", "coding"]
|
121 |
if grader_models is None:
|
@@ -143,12 +179,25 @@ def run_evaluation(
|
|
143 |
return exp_name
|
144 |
|
145 |
|
146 |
-
def highlight_color(val):
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
return f"color: {color}"
|
149 |
|
150 |
|
151 |
-
def generate_and_display_tables(df):
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
# Grouping by prefix
|
153 |
prefixes = ["problem", "interviewer", "feedback"]
|
154 |
prefix_columns = [col for col in df.columns if any(col.startswith(prefix) for prefix in prefixes)]
|
@@ -235,15 +284,19 @@ def generate_and_display_tables(df):
|
|
235 |
return tables_dict
|
236 |
|
237 |
|
238 |
-
def filter_df(df, prefixes=["problem", "interviewer", "feedback"]):
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
columns_to_check = [col for col in df.columns if any(col.startswith(prefix) for prefix in prefixes)]
|
241 |
|
242 |
-
# Function to check if a value is a boolean, None, or string representations of boolean types
|
243 |
def is_valid_value(val):
|
244 |
return isinstance(val, bool) or val is None or val is np.nan or val in {"True", "False", "None", "NaN"}
|
245 |
|
246 |
-
# Function to convert string representations to actual booleans
|
247 |
def to_bool(val):
|
248 |
if val == "True":
|
249 |
return True
|
@@ -253,25 +306,17 @@ def filter_df(df, prefixes=["problem", "interviewer", "feedback"]):
|
|
253 |
return None
|
254 |
return val
|
255 |
|
256 |
-
# Check if all values in the specified columns are valid
|
257 |
def all_values_valid(row):
|
258 |
return all(is_valid_value(row[col]) for col in columns_to_check)
|
259 |
|
260 |
-
# Apply filtering to keep only rows with valid values
|
261 |
valid_df = df[df.apply(all_values_valid, axis=1)].copy()
|
262 |
-
|
263 |
-
# Convert string representations to booleans
|
264 |
for col in columns_to_check:
|
265 |
valid_df[col] = valid_df[col].apply(to_bool)
|
266 |
|
267 |
-
# Identify removed rows
|
268 |
removed_rows = df[~df.index.isin(valid_df.index)]
|
269 |
-
|
270 |
-
# Print the number of rows removed
|
271 |
num_removed = len(removed_rows)
|
272 |
print(f"Number of rows removed: {num_removed}")
|
273 |
|
274 |
-
# Print the value from the "file_name" column for each removed row, or `None` if not present
|
275 |
if "file_name" in removed_rows.columns:
|
276 |
for value in removed_rows["file_name"].tolist():
|
277 |
print(f"Removed row file_name: {value}")
|
@@ -281,26 +326,30 @@ def filter_df(df, prefixes=["problem", "interviewer", "feedback"]):
|
|
281 |
return valid_df
|
282 |
|
283 |
|
284 |
-
def generate_analysis_report(df, folder, focus=None, model="gpt-4o"):
|
|
|
|
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
client = OpenAI(base_url="https://api.openai.com/v1")
|
287 |
|
288 |
all_comments = "\n\n".join([f"Interview type: {t}. Feedback: {str(f)}" for t, f in zip(df["type"].values, df["comments"].values)])
|
289 |
|
290 |
-
messages = [
|
291 |
-
{"role": "system", "content": feedback_analyzer},
|
292 |
-
{"role": "user", "content": f"Interview feedback: {all_comments}"},
|
293 |
-
]
|
294 |
|
295 |
if focus:
|
296 |
messages.append({"role": "user", "content": f"Focus only on comments about {focus} part of the interview"})
|
297 |
|
298 |
response = client.chat.completions.create(model=model, messages=messages, temperature=1)
|
299 |
-
|
300 |
comments_analysis = response.choices[0].message.content
|
301 |
display(Markdown(comments_analysis))
|
302 |
|
303 |
-
if folder
|
304 |
with open(os.path.join(folder, "analysis.md"), "w") as f:
|
305 |
f.write(comments_analysis)
|
306 |
f.write("\n\n")
|
@@ -308,16 +357,18 @@ def generate_analysis_report(df, folder, focus=None, model="gpt-4o"):
|
|
308 |
f.write(f"Type: {t}\n")
|
309 |
f.write(df[[c for c in df.columns if c != "comments"]][df["type"] == t].T.to_markdown())
|
310 |
f.write("\n\n")
|
311 |
-
f.write(f"Type: all\n")
|
312 |
-
f.write("\n\n")
|
313 |
-
f.write("Feedback:\n")
|
314 |
-
f.write(all_comments)
|
315 |
|
316 |
return comments_analysis
|
317 |
|
318 |
|
319 |
-
def analyze_and_improve_segment(df, segment_to_improve=None):
|
|
|
|
|
320 |
|
|
|
|
|
|
|
321 |
sorted_stages = df[["problem", "interviewer", "feedback"]].mean().sort_values()
|
322 |
if not segment_to_improve:
|
323 |
segment_to_improve = sorted_stages.index[0]
|
@@ -326,43 +377,25 @@ def analyze_and_improve_segment(df, segment_to_improve=None):
|
|
326 |
print(f"Let's try to improve {segment_to_improve}")
|
327 |
print(f"Quality threshold {th_score}")
|
328 |
|
329 |
-
# Identifying types that need improvement
|
330 |
type_stage_scores = df.groupby("type")[segment_to_improve].mean()
|
331 |
-
types_to_improve = []
|
332 |
-
for t, s in type_stage_scores.items():
|
333 |
-
if s < th_score:
|
334 |
-
types_to_improve.append(t)
|
335 |
-
|
336 |
print(f"We will focus on {types_to_improve}")
|
337 |
|
338 |
-
# Filtering DataFrame based on identified types and scoring criteria
|
339 |
filtered_df = df[df["type"].apply(lambda x: x in types_to_improve)]
|
340 |
prefix_columns = [col for col in df.columns if col.startswith(segment_to_improve)]
|
341 |
filtered_df = filtered_df[filtered_df[prefix_columns].mean(axis=1) < th_score]
|
342 |
|
343 |
-
# Generating an analysis report
|
344 |
comments_analysis = generate_analysis_report(filtered_df, None, focus=segment_to_improve, model="gpt-4o")
|
345 |
|
346 |
-
|
347 |
-
improvement_prompt = """You want to improve the prompts for LLM interviewer.
|
348 |
-
Below you will see some of the prompts that are used right now.
|
349 |
-
As well as a summary of mistakes that interviewer make.
|
350 |
-
You can add 1-3 lines to each of prompts if needed, but you can't change or remove anything.
|
351 |
-
"""
|
352 |
|
353 |
-
# Selecting the base prompt for the segment to improve
|
354 |
base_prompt = base_prompts.get(f"base_{segment_to_improve}", "Base prompt not found for the segment")
|
355 |
|
356 |
-
|
357 |
-
current_prompts = "The current prompts are below. \n"
|
358 |
-
current_prompts += "BASE PROMPT (applied to all interview types): \n"
|
359 |
-
current_prompts += base_prompt + "\n"
|
360 |
-
|
361 |
for k, v in prompts.items():
|
362 |
if segment_to_improve in k:
|
363 |
current_prompts += f"{k}: {v[len(base_prompt):]} \n\n"
|
364 |
|
365 |
-
# Making API call to OpenAI
|
366 |
client = OpenAI(base_url="https://api.openai.com/v1")
|
367 |
model = "gpt-4o"
|
368 |
messages = [
|
|
|
15 |
from openai import OpenAI
|
16 |
from tests.testing_prompts import feedback_analyzer
|
17 |
from resources.prompts import prompts, base_prompts
|
18 |
+
from typing import List, Dict, Any, Tuple, Optional
|
19 |
|
20 |
criteria_list = {
|
21 |
"problem_statement",
|
|
|
66 |
}
|
67 |
|
68 |
|
69 |
+
def grade_attempt(file_path: str, grader_model: str, attempt_index: int) -> Optional[Dict[str, Any]]:
|
70 |
+
"""
|
71 |
+
Grade an interview attempt using the specified grader model.
|
72 |
+
|
73 |
+
:param file_path: Path to the JSON file containing interview data.
|
74 |
+
:param grader_model: Grader model to use for grading.
|
75 |
+
:param attempt_index: Index of the grading attempt.
|
76 |
+
:return: Feedback dictionary or None if grading fails.
|
77 |
+
"""
|
78 |
for retry in range(3): # Retry mechanism
|
79 |
try:
|
80 |
feedback = grade(file_path, grader_model, str(attempt_index))
|
|
|
85 |
return None
|
86 |
|
87 |
|
88 |
+
def complete_and_grade(
|
89 |
+
interview_params: Tuple[str, int, Any], exp_name: str, grader_models: List[str], candidate_model: str
|
90 |
+
) -> List[Dict[str, Any]]:
|
91 |
+
"""
|
92 |
+
Complete an interview and grade it using specified grader models.
|
93 |
|
94 |
+
:param interview_params: Tuple containing interview type, attempt number, and LLM config.
|
95 |
+
:param exp_name: Experiment name.
|
96 |
+
:param grader_models: List of grader models.
|
97 |
+
:param candidate_model: Candidate model name.
|
98 |
+
:return: List of feedback dictionaries.
|
99 |
+
"""
|
100 |
+
interview_type, attempt_num, llm_config = interview_params
|
101 |
feedback_list = []
|
102 |
+
|
103 |
+
# Attempt interview completion with retries
|
104 |
+
for attempt in range(3):
|
105 |
try:
|
106 |
file_path, _ = complete_interview(interview_type, exp_name, llm_config, model=candidate_model, pause=attempt * 5)
|
107 |
print(
|
108 |
f"Attempt {attempt_num + 1}, retry {attempt + 1} interview simulation of {interview_type} by {llm_config.name} completed successfully"
|
109 |
)
|
|
|
110 |
break
|
111 |
except Exception as e:
|
112 |
print(f"Retry {attempt + 1} for attempt {attempt_num + 1} of {interview_type} by {llm_config.name} failed with error: {e}")
|
113 |
+
else:
|
|
|
114 |
print(f"All retries failed for attempt {attempt_num + 1} of {interview_type} by {llm_config.name}")
|
115 |
return feedback_list
|
116 |
|
117 |
+
# Grade the interview
|
118 |
try:
|
119 |
for i, grader_model in enumerate(grader_models):
|
120 |
feedback = grade_attempt(file_path, grader_model, i)
|
|
|
122 |
feedback_list.append(feedback)
|
123 |
print(f"Attempt {attempt_num + 1} of {interview_type} by {llm_config.name} graded by {grader_model} successfully")
|
124 |
print(f"Overall score: {feedback['overall_score']}")
|
|
|
125 |
except Exception as e:
|
126 |
print(f"Grading for attempt {attempt_num + 1} of {interview_type} by {llm_config.name} failed with error: {e}")
|
127 |
|
128 |
+
if not feedback_list:
|
129 |
print(f"Attempt {attempt_num + 1} of {interview_type} by {llm_config.name} returned an empty list")
|
130 |
|
131 |
return feedback_list
|
132 |
|
133 |
|
134 |
def run_evaluation(
|
135 |
+
exp_name: str,
|
136 |
+
num_attempts: int = 5,
|
137 |
+
interview_types: Optional[List[str]] = None,
|
138 |
+
grader_models: Optional[List[str]] = None,
|
139 |
+
llm_configs: Optional[List[Any]] = None,
|
140 |
+
candidate_model: str = "gpt-3.5-turbo",
|
141 |
+
num_workers: int = 3,
|
142 |
+
) -> str:
|
143 |
+
"""
|
144 |
+
Run the evaluation by completing and grading interviews.
|
145 |
+
|
146 |
+
:param exp_name: Experiment name.
|
147 |
+
:param num_attempts: Number of attempts per interview type.
|
148 |
+
:param interview_types: List of interview types.
|
149 |
+
:param grader_models: List of grader models.
|
150 |
+
:param llm_configs: List of LLM configurations.
|
151 |
+
:param candidate_model: Candidate model name.
|
152 |
+
:param num_workers: Number of workers for concurrent execution.
|
153 |
+
:return: Experiment name.
|
154 |
+
"""
|
155 |
if interview_types is None:
|
156 |
interview_types = ["ml_design", "math", "ml_theory", "system_design", "sql", "coding"]
|
157 |
if grader_models is None:
|
|
|
179 |
return exp_name
|
180 |
|
181 |
|
182 |
+
def highlight_color(val: float) -> str:
|
183 |
+
"""
|
184 |
+
Highlight the cell color based on the value.
|
185 |
+
|
186 |
+
:param val: The value to determine the color.
|
187 |
+
:return: The color style string.
|
188 |
+
"""
|
189 |
+
color_map = {val < 0.7: "red", 0.7 <= val < 0.9: "orange", 0.9 <= val < 0.95: "lightgreen", val >= 0.95: "green"}
|
190 |
+
color = next(color for condition, color in color_map.items() if condition)
|
191 |
return f"color: {color}"
|
192 |
|
193 |
|
194 |
+
def generate_and_display_tables(df: pd.DataFrame) -> Dict[str, Any]:
|
195 |
+
"""
|
196 |
+
Generate and display various tables for analysis.
|
197 |
+
|
198 |
+
:param df: DataFrame containing the data.
|
199 |
+
:return: Dictionary of styled tables.
|
200 |
+
"""
|
201 |
# Grouping by prefix
|
202 |
prefixes = ["problem", "interviewer", "feedback"]
|
203 |
prefix_columns = [col for col in df.columns if any(col.startswith(prefix) for prefix in prefixes)]
|
|
|
284 |
return tables_dict
|
285 |
|
286 |
|
287 |
+
def filter_df(df: pd.DataFrame, prefixes: List[str] = ["problem", "interviewer", "feedback"]) -> pd.DataFrame:
|
288 |
+
"""
|
289 |
+
Filter the DataFrame to keep only rows with valid values in specified columns.
|
290 |
+
|
291 |
+
:param df: DataFrame to filter.
|
292 |
+
:param prefixes: List of prefixes to identify columns to check.
|
293 |
+
:return: Filtered DataFrame.
|
294 |
+
"""
|
295 |
columns_to_check = [col for col in df.columns if any(col.startswith(prefix) for prefix in prefixes)]
|
296 |
|
|
|
297 |
def is_valid_value(val):
|
298 |
return isinstance(val, bool) or val is None or val is np.nan or val in {"True", "False", "None", "NaN"}
|
299 |
|
|
|
300 |
def to_bool(val):
|
301 |
if val == "True":
|
302 |
return True
|
|
|
306 |
return None
|
307 |
return val
|
308 |
|
|
|
309 |
def all_values_valid(row):
|
310 |
return all(is_valid_value(row[col]) for col in columns_to_check)
|
311 |
|
|
|
312 |
valid_df = df[df.apply(all_values_valid, axis=1)].copy()
|
|
|
|
|
313 |
for col in columns_to_check:
|
314 |
valid_df[col] = valid_df[col].apply(to_bool)
|
315 |
|
|
|
316 |
removed_rows = df[~df.index.isin(valid_df.index)]
|
|
|
|
|
317 |
num_removed = len(removed_rows)
|
318 |
print(f"Number of rows removed: {num_removed}")
|
319 |
|
|
|
320 |
if "file_name" in removed_rows.columns:
|
321 |
for value in removed_rows["file_name"].tolist():
|
322 |
print(f"Removed row file_name: {value}")
|
|
|
326 |
return valid_df
|
327 |
|
328 |
|
329 |
+
def generate_analysis_report(df: pd.DataFrame, folder: Optional[str], focus: Optional[str] = None, model: str = "gpt-4o") -> str:
|
330 |
+
"""
|
331 |
+
Generate an analysis report based on the feedback data.
|
332 |
|
333 |
+
:param df: DataFrame containing the feedback data.
|
334 |
+
:param folder: Folder to save the analysis report.
|
335 |
+
:param focus: Specific focus area for the analysis.
|
336 |
+
:param model: Model used for generating the analysis.
|
337 |
+
:return: Analysis report content.
|
338 |
+
"""
|
339 |
client = OpenAI(base_url="https://api.openai.com/v1")
|
340 |
|
341 |
all_comments = "\n\n".join([f"Interview type: {t}. Feedback: {str(f)}" for t, f in zip(df["type"].values, df["comments"].values)])
|
342 |
|
343 |
+
messages = [{"role": "system", "content": feedback_analyzer}, {"role": "user", "content": f"Interview feedback: {all_comments}"}]
|
|
|
|
|
|
|
344 |
|
345 |
if focus:
|
346 |
messages.append({"role": "user", "content": f"Focus only on comments about {focus} part of the interview"})
|
347 |
|
348 |
response = client.chat.completions.create(model=model, messages=messages, temperature=1)
|
|
|
349 |
comments_analysis = response.choices[0].message.content
|
350 |
display(Markdown(comments_analysis))
|
351 |
|
352 |
+
if folder:
|
353 |
with open(os.path.join(folder, "analysis.md"), "w") as f:
|
354 |
f.write(comments_analysis)
|
355 |
f.write("\n\n")
|
|
|
357 |
f.write(f"Type: {t}\n")
|
358 |
f.write(df[[c for c in df.columns if c != "comments"]][df["type"] == t].T.to_markdown())
|
359 |
f.write("\n\n")
|
360 |
+
f.write(f"Type: all\n\nFeedback:\n{all_comments}")
|
|
|
|
|
|
|
361 |
|
362 |
return comments_analysis
|
363 |
|
364 |
|
365 |
+
def analyze_and_improve_segment(df: pd.DataFrame, segment_to_improve: Optional[str] = None) -> None:
|
366 |
+
"""
|
367 |
+
Analyze and improve a specific segment of the interview process.
|
368 |
|
369 |
+
:param df: DataFrame containing the data.
|
370 |
+
:param segment_to_improve: Segment to focus on for improvement.
|
371 |
+
"""
|
372 |
sorted_stages = df[["problem", "interviewer", "feedback"]].mean().sort_values()
|
373 |
if not segment_to_improve:
|
374 |
segment_to_improve = sorted_stages.index[0]
|
|
|
377 |
print(f"Let's try to improve {segment_to_improve}")
|
378 |
print(f"Quality threshold {th_score}")
|
379 |
|
|
|
380 |
type_stage_scores = df.groupby("type")[segment_to_improve].mean()
|
381 |
+
types_to_improve = [t for t, s in type_stage_scores.items() if s < th_score]
|
|
|
|
|
|
|
|
|
382 |
print(f"We will focus on {types_to_improve}")
|
383 |
|
|
|
384 |
filtered_df = df[df["type"].apply(lambda x: x in types_to_improve)]
|
385 |
prefix_columns = [col for col in df.columns if col.startswith(segment_to_improve)]
|
386 |
filtered_df = filtered_df[filtered_df[prefix_columns].mean(axis=1) < th_score]
|
387 |
|
|
|
388 |
comments_analysis = generate_analysis_report(filtered_df, None, focus=segment_to_improve, model="gpt-4o")
|
389 |
|
390 |
+
improvement_prompt = "You want to improve the prompts for LLM interviewer. Below you will see some of the prompts that are used right now. As well as a summary of mistakes that interviewer make. You can add 1-3 lines to each of prompts if needed, but you can't change or remove anything."
|
|
|
|
|
|
|
|
|
|
|
391 |
|
|
|
392 |
base_prompt = base_prompts.get(f"base_{segment_to_improve}", "Base prompt not found for the segment")
|
393 |
|
394 |
+
current_prompts = f"The current prompts are below. \nBASE PROMPT (applied to all interview types): \n{base_prompt}\n"
|
|
|
|
|
|
|
|
|
395 |
for k, v in prompts.items():
|
396 |
if segment_to_improve in k:
|
397 |
current_prompts += f"{k}: {v[len(base_prompt):]} \n\n"
|
398 |
|
|
|
399 |
client = OpenAI(base_url="https://api.openai.com/v1")
|
400 |
model = "gpt-4o"
|
401 |
messages = [
|
tests/candidate.py
CHANGED
@@ -3,11 +3,10 @@ import os
|
|
3 |
import random
|
4 |
import string
|
5 |
import time
|
6 |
-
|
7 |
from collections import defaultdict
|
|
|
8 |
|
9 |
from openai import OpenAI
|
10 |
-
|
11 |
from api.llm import LLMManager
|
12 |
from utils.config import Config
|
13 |
from resources.data import fixed_messages, topic_lists
|
@@ -15,14 +14,36 @@ from resources.prompts import prompts
|
|
15 |
from tests.testing_prompts import candidate_prompt
|
16 |
|
17 |
|
18 |
-
def complete_interview(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
client = OpenAI(base_url="https://api.openai.com/v1")
|
20 |
config = Config()
|
21 |
if llm_config:
|
22 |
config.llm = llm_config
|
23 |
llm = LLMManager(config, prompts)
|
24 |
llm_name = config.llm.name
|
25 |
-
print(f"Starting evaluation interviewer LLM: {llm_name},
|
26 |
# Select a random topic or difficulty if not provided
|
27 |
topic = topic or random.choice(topic_lists[interview_type])
|
28 |
difficulty = difficulty or random.choice(["easy", "medium", "hard"])
|
@@ -46,7 +67,6 @@ def complete_interview(interview_type, exp_name, llm_config=None, requirements="
|
|
46 |
"average_response_time_seconds": 0,
|
47 |
},
|
48 |
)
|
49 |
-
|
50 |
# Initialize interviewer and candidate messages
|
51 |
messages_interviewer = llm.init_bot(problem_statement_text, interview_type)
|
52 |
chat_display = [[None, fixed_messages["start"]]]
|
@@ -82,7 +102,6 @@ def complete_interview(interview_type, exp_name, llm_config=None, requirements="
|
|
82 |
|
83 |
chat_display.append([candidate_message, None])
|
84 |
|
85 |
-
# Check if the interview should finish
|
86 |
if response_json.get("finished") and not response_json.get("question"):
|
87 |
break
|
88 |
|
|
|
3 |
import random
|
4 |
import string
|
5 |
import time
|
|
|
6 |
from collections import defaultdict
|
7 |
+
from typing import Dict, Optional, Tuple
|
8 |
|
9 |
from openai import OpenAI
|
|
|
10 |
from api.llm import LLMManager
|
11 |
from utils.config import Config
|
12 |
from resources.data import fixed_messages, topic_lists
|
|
|
14 |
from tests.testing_prompts import candidate_prompt
|
15 |
|
16 |
|
17 |
+
def complete_interview(
|
18 |
+
interview_type: str,
|
19 |
+
exp_name: str,
|
20 |
+
llm_config: Optional[Config] = None,
|
21 |
+
requirements: str = "",
|
22 |
+
difficulty: str = "",
|
23 |
+
topic: str = "",
|
24 |
+
model: str = "gpt-3.5-turbo",
|
25 |
+
pause: int = 0,
|
26 |
+
) -> Tuple[str, Dict]:
|
27 |
+
"""
|
28 |
+
Complete an interview and record the results.
|
29 |
+
|
30 |
+
:param interview_type: Type of interview to complete.
|
31 |
+
:param exp_name: Experiment name for file saving.
|
32 |
+
:param llm_config: Optional LLM configuration.
|
33 |
+
:param requirements: Additional requirements for the interview.
|
34 |
+
:param difficulty: Difficulty level for the interview.
|
35 |
+
:param topic: Topic for the interview.
|
36 |
+
:param model: Model to use for the candidate.
|
37 |
+
:param pause: Pause duration between requests to prevent rate limits.
|
38 |
+
:return: Tuple containing the file path and interview data.
|
39 |
+
"""
|
40 |
client = OpenAI(base_url="https://api.openai.com/v1")
|
41 |
config = Config()
|
42 |
if llm_config:
|
43 |
config.llm = llm_config
|
44 |
llm = LLMManager(config, prompts)
|
45 |
llm_name = config.llm.name
|
46 |
+
print(f"Starting evaluation interviewer LLM: {llm_name}, candidate LLM: {model}, interview type: {interview_type}")
|
47 |
# Select a random topic or difficulty if not provided
|
48 |
topic = topic or random.choice(topic_lists[interview_type])
|
49 |
difficulty = difficulty or random.choice(["easy", "medium", "hard"])
|
|
|
67 |
"average_response_time_seconds": 0,
|
68 |
},
|
69 |
)
|
|
|
70 |
# Initialize interviewer and candidate messages
|
71 |
messages_interviewer = llm.init_bot(problem_statement_text, interview_type)
|
72 |
chat_display = [[None, fixed_messages["start"]]]
|
|
|
102 |
|
103 |
chat_display.append([candidate_message, None])
|
104 |
|
|
|
105 |
if response_json.get("finished") and not response_json.get("question"):
|
106 |
break
|
107 |
|
tests/grader.py
CHANGED
@@ -1,27 +1,23 @@
|
|
1 |
import json
|
2 |
-
|
3 |
from openai import OpenAI
|
4 |
-
|
5 |
from tests.testing_prompts import grader_prompt
|
6 |
|
7 |
|
8 |
-
def grade(json_file_path, model="gpt-4o", suffix=""):
|
9 |
-
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
with open(json_file_path) as file:
|
12 |
interview_data = json.load(file)
|
13 |
|
14 |
-
interview_summary_list =
|
15 |
-
interview_summary_list.append(f"Interview type: {interview_data['inputs']['interview_type']}")
|
16 |
-
interview_summary_list.append(f"Interview difficulty: {interview_data['inputs']['difficulty']}")
|
17 |
-
interview_summary_list.append(f"Interview topic: {interview_data['inputs']['topic']}")
|
18 |
-
if interview_data["inputs"]["requirements"] != "":
|
19 |
-
interview_summary_list.append(f"Interview requirements: {interview_data['inputs']['requirements']}")
|
20 |
-
interview_summary_list.append(f"Problem statement proposed by interviewer: {interview_data['problem_statement']}")
|
21 |
-
interview_summary_list.append(f"\nTranscript of the whole interview below:")
|
22 |
-
interview_summary_list += interview_data["transcript"]
|
23 |
-
interview_summary_list.append(f"\nTHE MAIN PART OF THE INTERVIEW ENDED HERE.")
|
24 |
-
interview_summary_list.append(f"Feedback provided by interviewer: {interview_data['feedback']}")
|
25 |
|
26 |
messages = [
|
27 |
{"role": "system", "content": grader_prompt},
|
@@ -31,25 +27,81 @@ def grade(json_file_path, model="gpt-4o", suffix=""):
|
|
31 |
response = client.chat.completions.create(model=model, messages=messages, temperature=0, response_format={"type": "json_object"})
|
32 |
feedback = json.loads(response.choices[0].message.content)
|
33 |
|
34 |
-
feedback
|
35 |
-
feedback
|
36 |
-
|
37 |
-
feedback
|
38 |
-
|
39 |
-
feedback
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
scores = [
|
45 |
-
feedback[
|
46 |
-
for
|
47 |
-
if (
|
48 |
]
|
49 |
feedback["overall_score"] = sum(scores) / len(scores)
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
with open(json_file_path.replace(".json", f"_feedback_{suffix}.json"), "w") as file:
|
53 |
json.dump(feedback, file, indent=4)
|
54 |
-
|
55 |
-
return feedback
|
|
|
1 |
import json
|
2 |
+
from typing import Dict, Any, List
|
3 |
from openai import OpenAI
|
|
|
4 |
from tests.testing_prompts import grader_prompt
|
5 |
|
6 |
|
7 |
+
def grade(json_file_path: str, model: str = "gpt-4o", suffix: str = "") -> Dict[str, Any]:
|
8 |
+
"""
|
9 |
+
Grade the interview data and provide feedback.
|
10 |
|
11 |
+
:param json_file_path: Path to the JSON file containing interview data.
|
12 |
+
:param model: Model to use for grading.
|
13 |
+
:param suffix: Suffix to add to the feedback file name.
|
14 |
+
:return: Feedback dictionary.
|
15 |
+
"""
|
16 |
+
client = OpenAI(base_url="https://api.openai.com/v1")
|
17 |
with open(json_file_path) as file:
|
18 |
interview_data = json.load(file)
|
19 |
|
20 |
+
interview_summary_list = generate_interview_summary(interview_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
messages = [
|
23 |
{"role": "system", "content": grader_prompt},
|
|
|
27 |
response = client.chat.completions.create(model=model, messages=messages, temperature=0, response_format={"type": "json_object"})
|
28 |
feedback = json.loads(response.choices[0].message.content)
|
29 |
|
30 |
+
populate_feedback_metadata(feedback, json_file_path, interview_data, model)
|
31 |
+
calculate_overall_score(feedback)
|
32 |
+
|
33 |
+
save_feedback(json_file_path, feedback, suffix)
|
34 |
+
|
35 |
+
return feedback
|
36 |
+
|
37 |
+
|
38 |
+
def generate_interview_summary(interview_data: Dict[str, Any]) -> List[str]:
|
39 |
+
"""
|
40 |
+
Generate a summary of the interview data.
|
41 |
+
|
42 |
+
:param interview_data: Dictionary containing interview data.
|
43 |
+
:return: List of summary strings.
|
44 |
+
"""
|
45 |
+
summary = [
|
46 |
+
f"Interview type: {interview_data['inputs']['interview_type']}",
|
47 |
+
f"Interview difficulty: {interview_data['inputs']['difficulty']}",
|
48 |
+
f"Interview topic: {interview_data['inputs']['topic']}",
|
49 |
+
]
|
50 |
+
if interview_data["inputs"]["requirements"]:
|
51 |
+
summary.append(f"Interview requirements: {interview_data['inputs']['requirements']}")
|
52 |
+
summary.append(f"Problem statement proposed by interviewer: {interview_data['problem_statement']}")
|
53 |
+
summary.append(f"\nTranscript of the whole interview below:")
|
54 |
+
summary += interview_data["transcript"]
|
55 |
+
summary.append(f"\nTHE MAIN PART OF THE INTERVIEW ENDED HERE.")
|
56 |
+
summary.append(f"Feedback provided by interviewer: {interview_data['feedback']}")
|
57 |
+
return summary
|
58 |
+
|
59 |
+
|
60 |
+
def populate_feedback_metadata(feedback: Dict[str, Any], json_file_path: str, interview_data: Dict[str, Any], model: str) -> None:
|
61 |
+
"""
|
62 |
+
Populate feedback metadata with interview details.
|
63 |
+
|
64 |
+
:param feedback: Feedback dictionary to populate.
|
65 |
+
:param json_file_path: Path to the JSON file containing interview data.
|
66 |
+
:param interview_data: Dictionary containing interview data.
|
67 |
+
:param model: Model used for grading.
|
68 |
+
"""
|
69 |
+
feedback.update(
|
70 |
+
{
|
71 |
+
"file_name": json_file_path,
|
72 |
+
"agent_llm": interview_data["interviewer_llm"],
|
73 |
+
"candidate_llm": interview_data["candidate_llm"],
|
74 |
+
"grader_model": model,
|
75 |
+
"type": interview_data["inputs"]["interview_type"],
|
76 |
+
"difficulty": interview_data["inputs"]["difficulty"],
|
77 |
+
"topic": interview_data["inputs"]["topic"],
|
78 |
+
"average_response_time_seconds": interview_data["average_response_time_seconds"],
|
79 |
+
"number_of_messages": len(interview_data["transcript"]),
|
80 |
+
}
|
81 |
+
)
|
82 |
+
|
83 |
|
84 |
+
def calculate_overall_score(feedback: Dict[str, Any]) -> None:
|
85 |
+
"""
|
86 |
+
Calculate the overall score from the feedback.
|
87 |
+
|
88 |
+
:param feedback: Feedback dictionary containing scores.
|
89 |
+
"""
|
90 |
scores = [
|
91 |
+
feedback[key]
|
92 |
+
for key in feedback
|
93 |
+
if (key.startswith("interviewer_") or key.startswith("feedback_") or key.startswith("problem_")) and feedback[key] is not None
|
94 |
]
|
95 |
feedback["overall_score"] = sum(scores) / len(scores)
|
96 |
|
97 |
+
|
98 |
+
def save_feedback(json_file_path: str, feedback: Dict[str, Any], suffix: str) -> None:
|
99 |
+
"""
|
100 |
+
Save the feedback to a JSON file.
|
101 |
+
|
102 |
+
:param json_file_path: Path to the original JSON file.
|
103 |
+
:param feedback: Feedback dictionary to save.
|
104 |
+
:param suffix: Suffix to add to the feedback file name.
|
105 |
+
"""
|
106 |
with open(json_file_path.replace(".json", f"_feedback_{suffix}.json"), "w") as file:
|
107 |
json.dump(feedback, file, indent=4)
|
|
|
|
tests/test_e2e.py
CHANGED
@@ -2,21 +2,31 @@ from tests.candidate import complete_interview
|
|
2 |
from tests.grader import grade
|
3 |
from concurrent.futures import ThreadPoolExecutor
|
4 |
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
file_path, _ = complete_interview(interview_type, "test", model="gpt-3.5-turbo")
|
8 |
feedback = grade(file_path, model="gpt-4o")
|
9 |
assert feedback["overall_score"] > 0.4
|
10 |
return feedback["overall_score"]
|
11 |
|
12 |
|
13 |
-
def test_complete_interview():
|
|
|
|
|
|
|
14 |
interview_types = ["ml_design", "math", "ml_theory", "system_design", "sql", "coding"]
|
15 |
-
scores = []
|
16 |
|
17 |
with ThreadPoolExecutor(max_workers=3) as executor:
|
18 |
futures = [executor.submit(complete_and_grade_interview, it) for it in interview_types]
|
19 |
-
|
20 |
for future in futures:
|
21 |
score = future.result()
|
22 |
scores.append(score)
|
|
|
2 |
from tests.grader import grade
|
3 |
from concurrent.futures import ThreadPoolExecutor
|
4 |
|
5 |
+
from typing import List
|
6 |
|
7 |
+
|
8 |
+
def complete_and_grade_interview(interview_type: str) -> float:
|
9 |
+
"""
|
10 |
+
Complete an interview and return the overall score.
|
11 |
+
|
12 |
+
:param interview_type: Type of the interview.
|
13 |
+
:return: Overall score of the interview.
|
14 |
+
"""
|
15 |
file_path, _ = complete_interview(interview_type, "test", model="gpt-3.5-turbo")
|
16 |
feedback = grade(file_path, model="gpt-4o")
|
17 |
assert feedback["overall_score"] > 0.4
|
18 |
return feedback["overall_score"]
|
19 |
|
20 |
|
21 |
+
def test_complete_interview() -> None:
|
22 |
+
"""
|
23 |
+
Test the complete interview process for various interview types.
|
24 |
+
"""
|
25 |
interview_types = ["ml_design", "math", "ml_theory", "system_design", "sql", "coding"]
|
26 |
+
scores: List[float] = []
|
27 |
|
28 |
with ThreadPoolExecutor(max_workers=3) as executor:
|
29 |
futures = [executor.submit(complete_and_grade_interview, it) for it in interview_types]
|
|
|
30 |
for future in futures:
|
31 |
score = future.result()
|
32 |
scores.append(score)
|
tests/test_models.py
CHANGED
@@ -13,15 +13,23 @@ def app_config():
|
|
13 |
return Config()
|
14 |
|
15 |
|
16 |
-
def test_llm_connection(app_config):
|
|
|
|
|
|
|
|
|
|
|
17 |
llm = LLMManager(app_config, {})
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
assert streaming, "LLM streaming failed - streaming check failed"
|
22 |
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
25 |
stt = STTManager(app_config)
|
26 |
status = stt.status
|
27 |
streaming = stt.streaming
|
@@ -29,7 +37,12 @@ def test_stt_connection(app_config):
|
|
29 |
assert streaming, "STT streaming failed - streaming check failed"
|
30 |
|
31 |
|
32 |
-
def test_tts_connection(app_config):
|
|
|
|
|
|
|
|
|
|
|
33 |
tts = TTSManager(app_config)
|
34 |
status = tts.status
|
35 |
streaming = tts.streaming
|
|
|
13 |
return Config()
|
14 |
|
15 |
|
16 |
+
def test_llm_connection(app_config: Config):
|
17 |
+
"""
|
18 |
+
Test the connection and streaming capability of the LLM.
|
19 |
+
|
20 |
+
:param app_config: Configuration object.
|
21 |
+
"""
|
22 |
llm = LLMManager(app_config, {})
|
23 |
+
assert llm.status, "LLM connection failed - status check failed"
|
24 |
+
assert llm.streaming, "LLM streaming failed - streaming check failed"
|
25 |
+
|
|
|
26 |
|
27 |
+
def test_stt_connection(app_config: Config):
|
28 |
+
"""
|
29 |
+
Test the connection and streaming capability of the STT.
|
30 |
|
31 |
+
:param app_config: Configuration object.
|
32 |
+
"""
|
33 |
stt = STTManager(app_config)
|
34 |
status = stt.status
|
35 |
streaming = stt.streaming
|
|
|
37 |
assert streaming, "STT streaming failed - streaming check failed"
|
38 |
|
39 |
|
40 |
+
def test_tts_connection(app_config: Config):
|
41 |
+
"""
|
42 |
+
Test the connection and streaming capability of the TTS.
|
43 |
+
|
44 |
+
:param app_config: Configuration object.
|
45 |
+
"""
|
46 |
tts = TTSManager(app_config)
|
47 |
status = tts.status
|
48 |
streaming = tts.streaming
|
ui/coding.py
CHANGED
@@ -93,6 +93,7 @@ def get_problem_solving_ui(llm, tts, stt, default_audio_params, audio_output, na
|
|
93 |
with gr.Accordion("Feedback", open=True) as feedback_acc:
|
94 |
feedback = gr.Markdown(elem_id=f"{interview_type}_feedback")
|
95 |
|
|
|
96 |
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
|
97 |
fn=lambda: True, outputs=[started_coding]
|
98 |
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
|
|
|
93 |
with gr.Accordion("Feedback", open=True) as feedback_acc:
|
94 |
feedback = gr.Markdown(elem_id=f"{interview_type}_feedback")
|
95 |
|
96 |
+
# Start button click action chain
|
97 |
start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).success(
|
98 |
fn=lambda: True, outputs=[started_coding]
|
99 |
).success(fn=tts.read_last_message, inputs=[chat], outputs=[audio_output]).success(
|
utils/config.py
CHANGED
@@ -1,19 +1,29 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
from dotenv import load_dotenv
|
|
|
|
|
4 |
|
5 |
|
6 |
class ServiceConfig:
|
7 |
-
def __init__(self, url_var, type_var, name_var):
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
class Config:
|
15 |
def __init__(self):
|
|
|
|
|
|
|
16 |
load_dotenv(override=True)
|
17 |
-
self.llm = ServiceConfig("LLM_URL", "LLM_TYPE", "LLM_NAME")
|
18 |
-
self.stt = ServiceConfig("STT_URL", "STT_TYPE", "STT_NAME")
|
19 |
-
self.tts = ServiceConfig("TTS_URL", "TTS_TYPE", "TTS_NAME")
|
|
|
|
|
|
|
1 |
from dotenv import load_dotenv
|
2 |
+
import os
|
3 |
+
from typing import Optional
|
4 |
|
5 |
|
6 |
class ServiceConfig:
|
7 |
+
def __init__(self, url_var: str, type_var: str, name_var: str):
|
8 |
+
"""
|
9 |
+
Initialize the ServiceConfig with environment variables.
|
10 |
+
|
11 |
+
:param url_var: Environment variable for the service URL.
|
12 |
+
:param type_var: Environment variable for the service type.
|
13 |
+
:param name_var: Environment variable for the service name.
|
14 |
+
"""
|
15 |
+
self.url: Optional[str] = os.getenv(url_var)
|
16 |
+
self.type: Optional[str] = os.getenv(type_var)
|
17 |
+
self.name: Optional[str] = os.getenv(name_var)
|
18 |
+
self.key: Optional[str] = os.getenv(f"{self.type}_KEY")
|
19 |
|
20 |
|
21 |
class Config:
|
22 |
def __init__(self):
|
23 |
+
"""
|
24 |
+
Load environment variables and initialize service configurations.
|
25 |
+
"""
|
26 |
load_dotenv(override=True)
|
27 |
+
self.llm: ServiceConfig = ServiceConfig("LLM_URL", "LLM_TYPE", "LLM_NAME")
|
28 |
+
self.stt: ServiceConfig = ServiceConfig("STT_URL", "STT_TYPE", "STT_NAME")
|
29 |
+
self.tts: ServiceConfig = ServiceConfig("TTS_URL", "TTS_TYPE", "TTS_NAME")
|