import os from openai import OpenAI from utils.errors import APIError class LLMManager: def __init__(self, config, prompts): self.config = config self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key) self.prompts = prompts self.is_demo = os.getenv("IS_DEMO") self.demo_word_limit = os.getenv("DEMO_WORD_LIMIT") def test_connection(self): try: response = self.client.chat.completions.create( model=self.config.llm.name, messages=[ {"role": "system", "content": "You just help me test the connection."}, {"role": "user", "content": "Hi!"}, {"role": "user", "content": "Ping!"}, ], ) if not response.choices: raise APIError("LLM Test Connection Error", details="No choices in response") return response.choices[0].message.content.strip() except Exception as e: raise APIError(f"LLM Test Connection Error: Unexpected error: {e}") def init_bot(self, problem=""): system_prompt = self.prompts["coding_interviewer_prompt"] if self.is_demo: system_prompt += f" Keep your responses very short and simple, no more than {self.demo_word_limit} words." return [ {"role": "system", "content": system_prompt}, {"role": "system", "content": f"The candidate is solving the following problem: {problem}"}, ] def get_problem(self, requirements, difficulty, topic): full_prompt = ( f"Create a {difficulty} {topic} coding problem. " f"Additional requirements: {requirements}. " "The problem should be clearly stated, well-formatted, and solvable within 30 minutes. " "Ensure the problem varies each time to provide a wide range of challenges." ) if self.is_demo: full_prompt += f" Keep your response very short and simple, no more than {self.demo_word_limit} words." try: response = self.client.chat.completions.create( model=self.config.llm.name, messages=[ {"role": "system", "content": self.prompts["problem_generation_prompt"]}, {"role": "user", "content": full_prompt}, ], temperature=1.0, ) if not response.choices: raise APIError("LLM Problem Generation Error", details="No choices in response") question = response.choices[0].message.content.strip() except Exception as e: raise APIError(f"LLM Problem Generation Error: Unexpected error: {e}") chat_history = self.init_bot(question) return question, chat_history def send_request(self, code, previous_code, message, chat_history, chat_display): if code != previous_code: chat_history.append({"role": "user", "content": f"My latest code:\n{code}"}) chat_history.append({"role": "user", "content": message}) try: response = self.client.chat.completions.create(model=self.config.llm.name, messages=chat_history) if not response.choices: raise APIError("LLM Send Request Error", details="No choices in response") reply = response.choices[0].message.content.strip() except Exception as e: raise APIError(f"LLM Send Request Error: Unexpected error: {e}") chat_history.append({"role": "assistant", "content": reply}) if chat_display: chat_display[-1][1] = reply else: chat_display.append([message, reply]) return chat_history, chat_display, "", code def end_interview(self, problem_description, chat_history): if not chat_history or len(chat_history) <= 2: yield "No interview content available to review." transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]] system_prompt = self.prompts["grading_feedback_prompt"] if self.is_demo: system_prompt += f" Keep your response very short and simple, no more than {self.demo_word_limit} words." messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"The original problem to solve: {problem_description}"}, {"role": "user", "content": "\n\n".join(transcript)}, {"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."}, ] if os.getenv("STREAMING", False): try: response = self.client.chat.completions.create( model=self.config.llm.name, messages=messages, temperature=0.5, stream=True, ) except Exception as e: raise APIError(f"LLM End Interview Error: Unexpected error: {e}") feedback = "" for chunk in response: if chunk.choices[0].delta.content: feedback += chunk.choices[0].delta.content yield feedback # else: # response = self.client.chat.completions.create( # model=self.config.llm.name, # messages=messages, # temperature=0.5, # ) # feedback = response.choices[0].message.content.strip() # return feedback