import json import os import random import string import time from collections import defaultdict from typing import Dict, Optional, Tuple from openai import OpenAI from api.llm import LLMManager from utils.config import Config from resources.data import fixed_messages, topic_lists from resources.prompts import prompts from tests.testing_prompts import candidate_prompt def complete_interview( interview_type: str, exp_name: str, llm_config: Optional[Config] = None, requirements: str = "", difficulty: str = "", topic: str = "", model: str = "gpt-3.5-turbo", pause: int = 0, mode: str = "normal", max_messages: Optional[int] = None, ) -> Tuple[str, Dict]: """ Complete an interview and record the results with additional strange use cases. :param interview_type: Type of interview to complete. :param exp_name: Experiment name for file saving. :param llm_config: Optional LLM configuration. :param requirements: Additional requirements for the interview. :param difficulty: Difficulty level for the interview. :param topic: Topic for the interview. :param model: Model to use for the candidate. :param pause: Pause duration between requests to prevent rate limits. :param mode: Mode of operation ("normal", "empty", "gibberish", "repeat"). :param max_messages: Maximum number of messages in the conversation. :return: Tuple containing the file path and interview data. """ client = OpenAI(base_url="https://api.openai.com/v1") config = Config() if llm_config: config.llm = llm_config llm = LLMManager(config, prompts) llm_name = config.llm.name print(f"Starting evaluation interviewer LLM: {llm_name}, candidate LLM: {model}, interview type: {interview_type}") # Select a random topic or difficulty if not provided topic = topic or random.choice(topic_lists[interview_type]) difficulty = difficulty or random.choice(["easy", "medium", "hard"]) for problem_statement_text in llm.get_problem(requirements, difficulty, topic, interview_type): pass interview_data = defaultdict( lambda: None, { "interviewer_llm": llm_name, "candidate_llm": model, "inputs": { "interview_type": interview_type, "difficulty": difficulty, "topic": topic, "requirements": requirements, }, "problem_statement": problem_statement_text, "transcript": [], "feedback": None, "average_response_time_seconds": 0, }, ) # Initialize interviewer and candidate messages messages_interviewer = llm.init_bot(problem_statement_text, interview_type) chat_display = [[None, fixed_messages["start"]]] messages_candidate = [ {"role": "system", "content": candidate_prompt}, {"role": "user", "content": f"Your problem: {problem_statement_text}"}, {"role": "user", "content": chat_display[-1][1]}, ] response_times = [] previous_code = "" if max_messages is None: max_messages = 30 if mode == "normal" else 5 for _ in range(max_messages): if mode == "empty": response_content = "" elif mode == "gibberish": response_content = "".join(random.choices(string.ascii_letters + string.digits, k=50)) elif mode == "repeat": response_content = chat_display[-1][1] else: # normal mode response = client.chat.completions.create( model=model, messages=messages_candidate, temperature=1, response_format={"type": "json_object"} ) response_json = json.loads(response.choices[0].message.content) response_content = response_json.get("message", "") candidate_message = response_content if not candidate_message and mode != "empty": print("No message in response") continue messages_candidate.append({"role": "assistant", "content": candidate_message}) interview_data["transcript"].append(f"CANDIDATE MESSAGE: {candidate_message}") chat_display.append([candidate_message, None]) send_time = time.time() for messages_interviewer, chat_display, previous_code in llm.send_request( candidate_message, previous_code, messages_interviewer, chat_display ): pass response_times.append(time.time() - send_time) messages_candidate.append({"role": "user", "content": chat_display[-1][1]}) message_split = messages_interviewer[-1]["content"].split("#NOTES#") interview_data["transcript"].append(f"INTERVIEWER MESSAGE: {message_split[0]}") if len(message_split) > 1: interview_data["transcript"].append(f"INTERVIEWER HIDDEN NOTE: {message_split[1]}") time.sleep(pause) # to prevent exceeding rate limits for fb in llm.end_interview(problem_statement_text, messages_interviewer, interview_type): interview_data["feedback"] = fb interview_data["average_response_time_seconds"] = round(sum(response_times) / len(response_times), 2) if response_times else 0 current_time = time.strftime("%Y%m%d-%H%M%S") random_suffix = "".join(random.choices(string.ascii_letters + string.digits, k=10)) file_path = os.path.join("records", exp_name, f"{current_time}-{random_suffix}.json") os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, "w") as file: json.dump(interview_data, file, indent=4) return file_path, interview_data