import json import os import random import string import time from collections import defaultdict from dotenv import load_dotenv from openai import OpenAI from api.llm import LLMManager from config import config from resources.data import fixed_messages, topic_lists from resources.prompts import prompts from tests.testing_prompts import candidate_prompt load_dotenv() def complete_interview(interview_type, exp_name, requirements="", difficulty="", topic="", model="gpt-3.5-turbo"): client = OpenAI(base_url="https://api.openai.com/v1") llm = LLMManager(config, prompts) llm_name = config.llm.name # Select a random topic or difficulty if not provided topic = topic or random.choice(topic_lists[interview_type]) difficulty = difficulty or random.choice(["easy", "medium", "hard"]) problem_statement_text = llm.get_problem_full(requirements, difficulty, topic, interview_type) interview_data = defaultdict( lambda: None, { "interviewer_llm": llm_name, "candidate_llm": model, "inputs": { "interview_type": interview_type, "difficulty": difficulty, "topic": topic, "requirements": requirements, }, "problem_statement": problem_statement_text, "transcript": [], "feedback": None, "average_response_time_seconds": 0, }, ) # Initialize interviewer and candidate messages messages_interviewer = llm.init_bot(problem_statement_text, interview_type) chat_display = [[None, fixed_messages["start"]]] messages_candidate = [ {"role": "system", "content": candidate_prompt}, {"role": "user", "content": f"Your problem: {problem_statement_text}"}, {"role": "user", "content": chat_display[-1][1]}, ] response_times = [] previous_code = "" for _ in range(30): response = client.chat.completions.create( model=model, messages=messages_candidate, temperature=1, response_format={"type": "json_object"} ) response_json = json.loads(response.choices[0].message.content) code = response_json.get("code", "") candidate_message = response_json.get("message", "") if not code and not candidate_message: print("No message or code in response") continue messages_candidate.append({"role": "assistant", "content": response.choices[0].message.content}) if code: interview_data["transcript"].append(f"CANDIDATE CODE: {code}") elif candidate_message: interview_data["transcript"].append(f"CANDIDATE MESSAGE: {candidate_message}") chat_display.append([candidate_message, None]) # Check if the interview should finish if response_json.get("finished") and not response_json.get("question"): break send_time = time.time() messages_interviewer, chat_display, previous_code = llm.send_request_full(code, previous_code, messages_interviewer, chat_display) response_times.append(time.time() - send_time) messages_candidate.append({"role": "user", "content": chat_display[-1][1]}) interview_data["transcript"].append(f"INTERVIEWER MESSAGE: {chat_display[-1][1]}") interview_data["feedback"] = llm.end_interview_full(problem_statement_text, messages_interviewer, interview_type) interview_data["average_response_time_seconds"] = round(sum(response_times) / len(response_times), 2) if response_times else 0 current_time = time.strftime("%Y%m%d-%H%M%S") random_suffix = "".join(random.choices(string.ascii_letters + string.digits, k=10)) file_path = os.path.join("records", exp_name, f"{current_time}-{random_suffix}.json") os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, "w") as file: json.dump(interview_data, file, indent=4) return file_path, interview_data