import json from openai import OpenAI from tests.testing_prompts import grader_prompt def grade(json_file_path, model="gpt-4-turbo"): client = OpenAI(base_url="https://api.openai.com/v1") with open(json_file_path) as file: interview_data = json.load(file) interview_summary_list = [] interview_summary_list.append(f"Interview type: {interview_data['inputs']['interview_type']}") interview_summary_list.append(f"Interview difficulty: {interview_data['inputs']['difficulty']}") interview_summary_list.append(f"Interview topic: {interview_data['inputs']['topic']}") if interview_data["inputs"]["requirements"] != "": interview_summary_list.append(f"Interview requirements: {interview_data['inputs']['requirements']}") interview_summary_list.append(f"Problem statement proposed by interviewer: {interview_data['problem_statement']}") interview_summary_list.append(f"\nTranscript of the whole interview below:") interview_summary_list += interview_data["transcript"] interview_summary_list.append(f"\nTHE MAIN PART OF THE INTERVIEW ENDED HERE.") interview_summary_list.append(f"Feedback provided by interviewer: {interview_data['feedback']}") messages = [ {"role": "system", "content": grader_prompt}, {"role": "user", "content": f"Please evaluate the interviewer based on the following data: \n {'\n'.join(interview_summary_list)}"}, ] response = client.chat.completions.create(model=model, messages=messages, temperature=1, response_format={"type": "json_object"}) feedback = json.loads(response.choices[0].message.content) feedback["file_name"] = json_file_path feedback["agent_llm"] = interview_data["interviewer_llm"] feedback["candidate_llm"] = interview_data["candidate_llm"] feedback["type"] = interview_data["inputs"]["interview_type"] feedback["difficulty"] = interview_data["inputs"]["difficulty"] feedback["topic"] = interview_data["inputs"]["topic"] feedback["average_response_time_seconds"] = interview_data["average_response_time_seconds"] feedback["number_of_messages"] = len(interview_data["transcript"]) scores = [ feedback[x] for x in feedback if (x.startswith("interviewer_") or x.startswith("feedback_") or x.startswith("problem_")) and feedback[x] is not None ] feedback["overall_score"] = sum(scores) / len(scores) # save results to json file in the same folder as the interview data with open(json_file_path.replace(".json", "_feedback.json"), "w") as file: json.dump(feedback, file, indent=4) return feedback