import gradio as gr from llm import end_interview, get_problem, read_last_message, send_request, transcribe_audio from options import fixed_messages, models, topics_list default_audio_params = { "label": "Record answer", "sources": ["microphone"], "type": "numpy", "waveform_options": {"show_controls": False}, "editable": False, "container": False, "show_share_button": False, } def hide_settings(): init_acc = gr.Accordion("Settings", open=False) start_btn = gr.Button("Generate a problem", interactive=False) solution_acc = gr.Accordion("Solution", open=True) end_btn = gr.Button("Finish the interview", interactive=True) audio_input = gr.Audio(interactive=True, **default_audio_params) return init_acc, start_btn, solution_acc, end_btn, audio_input def add_interviewer_message(message): def f(chat): chat.append((None, message)) return chat return f def hide_solution(): solution_acc = gr.Accordion("Solution", open=False) end_btn = gr.Button("Finish the interview", interactive=False) problem_acc = gr.Accordion("Problem statement", open=False) audio_input = gr.Audio(interactive=False, **default_audio_params) return solution_acc, end_btn, problem_acc, audio_input with gr.Blocks() as demo: gr.Markdown("Your coding interview practice AI assistant!") # TODO: add other types of interviews (e.g. system design, ML design, behavioral, etc.) with gr.Tab("Coding") as coding_tab: chat_history = gr.State([]) previous_code = gr.State("") client = gr.State(None) client_started = gr.State(False) with gr.Accordion("Settings") as init_acc: with gr.Row(): with gr.Column(): gr.Markdown("##### Problem settings") with gr.Row(): gr.Markdown("Difficulty") difficulty_select = gr.Dropdown( label="Select difficulty", choices=["Easy", "Medium", "Hard"], value="Medium", container=False, allow_custom_value=True, ) with gr.Row(): gr.Markdown("Topic (can type custom value)") topic_select = gr.Dropdown( label="Select topic", choices=topics_list, value="Arrays", container=False, allow_custom_value=True ) gr.Markdown("##### Assistant settings") with gr.Row(): gr.Markdown("Select LLM model to use") model_select = gr.Dropdown(label="Select model", choices=models, value="gpt-3.5-turbo", container=False) with gr.Column(scale=2): requirements = gr.Textbox(label="Requirements", placeholder="Specify additional requirements", lines=5) start_btn = gr.Button("Generate a problem") # TODO: select LLM model with gr.Accordion("Problem statement", open=True) as problem_acc: description = gr.Markdown() with gr.Accordion("Solution", open=False) as solution_acc: with gr.Row() as content: with gr.Column(scale=2): code = gr.Code( label="Please write your code here. Only Python linting is available for now.", language="python", lines=35 ) with gr.Column(scale=1): end_btn = gr.Button("Finish the interview", interactive=False) chat = gr.Chatbot(label="Chat", show_label=False, show_share_button=False) audio_input = gr.Audio(interactive=False, **default_audio_params) audio_output = gr.Audio(label="Play audio", autoplay=True, visible=False) message = gr.Textbox(label="Message", lines=3, visible=False) with gr.Accordion("Feedback", open=True) as feedback_acc: feedback = gr.Markdown() with gr.Tab("Instruction") as instruction_tab: pass coding_tab.select(fn=add_interviewer_message(fixed_messages["intro"]), inputs=[chat], outputs=[chat]) start_btn.click(fn=add_interviewer_message(fixed_messages["start"]), inputs=[chat], outputs=[chat]).then( fn=get_problem, inputs=[requirements, difficulty_select, topic_select, model_select], outputs=[description, chat_history], scroll_to_output=True, ).then(fn=hide_settings, inputs=None, outputs=[init_acc, start_btn, solution_acc, end_btn, audio_input]) message.submit( fn=send_request, inputs=[code, previous_code, message, chat_history, chat, model_select], outputs=[chat_history, chat, message, previous_code], ) end_btn.click( fn=add_interviewer_message(fixed_messages["end"]), inputs=[chat], outputs=[chat], ).then( fn=end_interview, inputs=[description, chat_history, model_select], outputs=feedback ).then(fn=hide_solution, inputs=None, outputs=[solution_acc, end_btn, problem_acc, audio_input]) audio_input.stop_recording(fn=transcribe_audio, inputs=[audio_input], outputs=[message]).then( fn=lambda: None, inputs=None, outputs=[audio_input] ).then( fn=send_request, inputs=[code, previous_code, message, chat_history, chat, model_select], outputs=[chat_history, chat, message, previous_code], ) chat.change(fn=read_last_message, inputs=[chat], outputs=[audio_output]) audio_output.stop(fn=lambda: None, inputs=None, outputs=[audio_output]) demo.launch(show_api=False)