import os from openai import OpenAI from utils.errors import APIError from typing import List, Dict, Generator, Optional, Tuple class PromptManager: def __init__(self, prompts: Dict[str, str]): self.prompts = prompts self.limit = os.getenv("DEMO_WORD_LIMIT") def add_limit(self, prompt: str) -> str: if self.limit: prompt += f" Keep your responses very short and simple, no more than {self.limit} words." return prompt def get_system_prompt(self, key: str) -> str: prompt = self.prompts[key] return self.add_limit(prompt) def get_problem_requirements_prompt( self, type: str, difficulty: Optional[str] = None, topic: Optional[str] = None, requirements: Optional[str] = None ) -> str: prompt = f"Create a {type} problem. Difficulty: {difficulty}. Topic: {topic} Additional requirements: {requirements}. " return self.add_limit(prompt) class LLMManager: def __init__(self, config, prompts: Dict[str, str]): self.config = config self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key) self.prompt_manager = PromptManager(prompts) self.status = self.test_llm() self.streaming = self.test_llm_stream() if self.status else False if self.streaming: self.end_interview = self.end_interview_stream self.get_problem = self.get_problem_stream self.send_request = self.send_request_stream else: self.end_interview = self.end_interview_full self.get_problem = self.get_problem_full self.send_request = self.send_request_full def get_text(self, messages: List[Dict[str, str]]) -> str: try: response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1, max_tokens=2000) if not response.choices: raise APIError("LLM Get Text Error", details="No choices in response") return response.choices[0].message.content.strip() except Exception as e: raise APIError(f"LLM Get Text Error: Unexpected error: {e}") def get_text_stream(self, messages: List[Dict[str, str]]) -> Generator[str, None, None]: try: response = self.client.chat.completions.create( model=self.config.llm.name, messages=messages, temperature=1, stream=True, max_tokens=2000 ) except Exception as e: raise APIError(f"LLM End Interview Error: Unexpected error: {e}") text = "" for chunk in response: if chunk.choices[0].delta.content: text += chunk.choices[0].delta.content yield text def test_llm(self) -> bool: try: self.get_text( [ {"role": "system", "content": "You just help me test the connection."}, {"role": "user", "content": "Hi!"}, {"role": "user", "content": "Ping!"}, ] ) return True except: return False def test_llm_stream(self) -> bool: try: for _ in self.get_text_stream( [ {"role": "system", "content": "You just help me test the connection."}, {"role": "user", "content": "Hi!"}, {"role": "user", "content": "Ping!"}, ] ): pass return True except: return False def init_bot(self, problem: str, interview_type: str = "coding") -> List[Dict[str, str]]: system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt") return [{"role": "system", "content": f"{system_prompt}\nThe candidate is solving the following problem:\n {problem}"}] def get_problem_prepare_messages(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> List[Dict[str, str]]: system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt") full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements) return [ {"role": "system", "content": system_prompt}, {"role": "user", "content": full_prompt}, ] def get_problem_full(self, requirements: str, difficulty: str, topic: str, interview_type: str = "coding") -> str: messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type) return self.get_text(messages) def get_problem_stream( self, requirements: str, difficulty: str, topic: str, interview_type: str = "coding" ) -> Generator[str, None, None]: messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type) yield from self.get_text_stream(messages) def update_chat_history( self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]] ) -> List[Dict[str, str]]: message = chat_display[-1][0] if code != previous_code: message += "\nMY NOTES AND CODE:\n" + code chat_history.append({"role": "user", "content": message}) return chat_history def send_request_full( self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]] ) -> Tuple[List[Dict[str, str]], List[List[Optional[str]]], str]: chat_history = self.update_chat_history(code, previous_code, chat_history, chat_display) reply = self.get_text(chat_history) chat_display.append([None, reply.split("#NOTES#")[0].strip()]) chat_history.append({"role": "assistant", "content": reply}) return chat_history, chat_display, code def send_request_stream( self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]] ) -> Generator[Tuple[List[Dict[str, str]], List[List[Optional[str]]], str], None, None]: chat_history = self.update_chat_history(code, previous_code, chat_history, chat_display) chat_display.append([None, ""]) chat_history.append({"role": "assistant", "content": ""}) reply = self.get_text_stream(chat_history) for message in reply: chat_display[-1][1] = message.split("#NOTES#")[0].strip() chat_history[-1]["content"] = message yield chat_history, chat_display, code def end_interview_prepare_messages( self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str ) -> List[Dict[str, str]]: transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]] system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt") return [ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"The original problem to solve: {problem_description}"}, {"role": "user", "content": "\n\n".join(transcript)}, {"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."}, ] def end_interview_full(self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str = "coding") -> str: if len(chat_history) <= 2: return "No interview history available" messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type) return self.get_text(messages) def end_interview_stream( self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str = "coding" ) -> Generator[str, None, None]: if len(chat_history) <= 2: yield "No interview history available" messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type) yield from self.get_text_stream(messages)