File size: 57,923 Bytes
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6317bb3
 
f57d7c6
6317bb3
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
7243d06
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
 
 
 
 
 
 
7243d06
 
 
f57d7c6
 
 
 
 
 
7243d06
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6317bb3
46c2bfc
 
 
 
 
 
 
 
 
 
 
6317bb3
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6317bb3
 
f57d7c6
 
 
 
46c2bfc
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7243d06
f57d7c6
 
 
 
 
 
 
 
 
 
 
7243d06
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6317bb3
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
7243d06
 
 
 
 
 
 
 
f57d7c6
 
7243d06
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
7243d06
f57d7c6
 
 
 
 
 
 
7243d06
46c2bfc
f57d7c6
 
 
 
 
46c2bfc
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
46c2bfc
 
f57d7c6
 
46c2bfc
f57d7c6
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
46c2bfc
f57d7c6
46c2bfc
f57d7c6
 
 
 
 
46c2bfc
 
 
f57d7c6
 
 
 
 
 
46c2bfc
 
 
f57d7c6
46c2bfc
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
7243d06
f57d7c6
 
 
 
 
46c2bfc
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
46c2bfc
f57d7c6
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6317bb3
f57d7c6
 
 
7243d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7243d06
 
f57d7c6
 
 
 
 
7243d06
f57d7c6
 
 
 
 
7243d06
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
7243d06
f57d7c6
 
 
 
 
 
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
7243d06
 
 
f57d7c6
 
 
 
 
 
7243d06
f57d7c6
 
7243d06
f57d7c6
 
 
7243d06
f57d7c6
 
 
 
 
 
7243d06
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
7243d06
f57d7c6
 
 
 
7243d06
f57d7c6
7243d06
 
 
f57d7c6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
#include "common.h"
#include "build-info.h"
#include "llama.h"

#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iterator>
#include <iostream>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_set>
#include <vector>
#include <cinttypes>

#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <codecvt>
#include <locale>
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

int32_t get_num_physical_cores() {
#ifdef __linux__
    // enumerate the set of thread siblings, num entries is num cores
    std::unordered_set<std::string> siblings;
    for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
        std::ifstream thread_siblings("/sys/devices/system/cpu"
            + std::to_string(cpu) + "/topology/thread_siblings");
        if (!thread_siblings.is_open()) {
            break; // no more cpus
        }
        std::string line;
        if (std::getline(thread_siblings, line)) {
            siblings.insert(line);
        }
    }
    if (!siblings.empty()) {
        return static_cast<int32_t>(siblings.size());
    }
#elif defined(__APPLE__) && defined(__MACH__)
    int32_t num_physical_cores;
    size_t len = sizeof(num_physical_cores);
    int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
    result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
#elif defined(_WIN32)
    //TODO: Implement
#endif
    unsigned int n_threads = std::thread::hardware_concurrency();
    return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}

void process_escapes(std::string& input) {
    std::size_t input_len = input.length();
    std::size_t output_idx = 0;

    for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
        if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
            switch (input[++input_idx]) {
                case 'n':  input[output_idx++] = '\n'; break;
                case 'r':  input[output_idx++] = '\r'; break;
                case 't':  input[output_idx++] = '\t'; break;
                case '\'': input[output_idx++] = '\''; break;
                case '\"': input[output_idx++] = '\"'; break;
                case '\\': input[output_idx++] = '\\'; break;
                default:   input[output_idx++] = '\\';
                           input[output_idx++] = input[input_idx]; break;
            }
        } else {
            input[output_idx++] = input[input_idx];
        }
    }

    input.resize(output_idx);
}

bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
    bool invalid_param = false;
    std::string arg;
    gpt_params default_params;
    const std::string arg_prefix = "--";

    for (int i = 1; i < argc; i++) {
        arg = argv[i];
        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
            std::replace(arg.begin(), arg.end(), '_', '-');
        }

        if (arg == "-s" || arg == "--seed") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.seed = std::stoul(argv[i]);
        } else if (arg == "-t" || arg == "--threads") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_threads = std::stoi(argv[i]);
            if (params.n_threads <= 0) {
                params.n_threads = std::thread::hardware_concurrency();
            }
        } else if (arg == "-tb" || arg == "--threads-batch") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_threads_batch = std::stoi(argv[i]);
            if (params.n_threads_batch <= 0) {
                params.n_threads_batch = std::thread::hardware_concurrency();
            }
        } else if (arg == "-p" || arg == "--prompt") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.prompt = argv[i];
        } else if (arg == "-e" || arg == "--escape") {
            params.escape = true;
        } else if (arg == "--prompt-cache") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.path_prompt_cache = argv[i];
        } else if (arg == "--prompt-cache-all") {
            params.prompt_cache_all = true;
        } else if (arg == "--prompt-cache-ro") {
            params.prompt_cache_ro = true;
        } else if (arg == "-f" || arg == "--file") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            std::ifstream file(argv[i]);
            if (!file) {
                fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
                invalid_param = true;
                break;
            }
            // store the external file name in params
            params.prompt_file = argv[i];
            std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
            if (!params.prompt.empty() && params.prompt.back() == '\n') {
                params.prompt.pop_back();
            }
        } else if (arg == "-n" || arg == "--n-predict") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_predict = std::stoi(argv[i]);
        } else if (arg == "--top-k") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.top_k = std::stoi(argv[i]);
        } else if (arg == "-c" || arg == "--ctx-size") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_ctx = std::stoi(argv[i]);
        } else if (arg == "--rope-freq-base") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.rope_freq_base = std::stof(argv[i]);
        } else if (arg == "--rope-freq-scale") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.rope_freq_scale = std::stof(argv[i]);
        } else if (arg == "--rope-scale") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.rope_freq_scale = 1.0f/std::stof(argv[i]);
        } else if (arg == "--memory-f32") {
            params.memory_f16 = false;
        } else if (arg == "--top-p") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.top_p = std::stof(argv[i]);
        } else if (arg == "--temp") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.temp = std::stof(argv[i]);
        } else if (arg == "--tfs") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.tfs_z = std::stof(argv[i]);
        } else if (arg == "--typical") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.typical_p = std::stof(argv[i]);
        } else if (arg == "--repeat-last-n") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.repeat_last_n = std::stoi(argv[i]);
        } else if (arg == "--repeat-penalty") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.repeat_penalty = std::stof(argv[i]);
        } else if (arg == "--frequency-penalty") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.frequency_penalty = std::stof(argv[i]);
        } else if (arg == "--presence-penalty") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.presence_penalty = std::stof(argv[i]);
        } else if (arg == "--mirostat") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.mirostat = std::stoi(argv[i]);
        } else if (arg == "--mirostat-lr") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.mirostat_eta = std::stof(argv[i]);
        } else if (arg == "--mirostat-ent") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.mirostat_tau = std::stof(argv[i]);
        } else if (arg == "--cfg-negative-prompt") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.cfg_negative_prompt = argv[i];
        } else if (arg == "--cfg-negative-prompt-file") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            std::ifstream file(argv[i]);
            if (!file) {
                fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
                invalid_param = true;
                break;
            }
            std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
            if (!params.cfg_negative_prompt.empty() && params.cfg_negative_prompt.back() == '\n') {
                params.cfg_negative_prompt.pop_back();
            }
        } else if (arg == "--cfg-scale") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.cfg_scale = std::stof(argv[i]);
        } else if (arg == "-b" || arg == "--batch-size") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_batch = std::stoi(argv[i]);
        } else if (arg == "--keep") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_keep = std::stoi(argv[i]);
        } else if (arg == "--draft") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_draft = std::stoi(argv[i]);
        } else if (arg == "--chunks") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_chunks = std::stoi(argv[i]);
        } else if (arg == "-np" || arg == "--parallel") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_parallel = std::stoi(argv[i]);
        } else if (arg == "-ns" || arg == "--sequences") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_sequences = std::stoi(argv[i]);
        } else if (arg == "-m" || arg == "--model") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.model = argv[i];
        } else if (arg == "-md" || arg == "--model-draft") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.model_draft = argv[i];
        } else if (arg == "-a" || arg == "--alias") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.model_alias = argv[i];
        } else if (arg == "--lora") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
            params.use_mmap = false;
        } else if (arg == "--lora-scaled") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            const char * lora_adapter = argv[i];
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
            params.use_mmap = false;
        } else if (arg == "--lora-base") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.lora_base = argv[i];
        } else if (arg == "-i" || arg == "--interactive") {
            params.interactive = true;
        } else if (arg == "--embedding") {
            params.embedding = true;
        } else if (arg == "--interactive-first") {
            params.interactive_first = true;
        } else if (arg == "-ins" || arg == "--instruct") {
            params.instruct = true;
        } else if (arg == "--infill") {
            params.infill = true;
        } else if (arg == "--multiline-input") {
            params.multiline_input = true;
        } else if (arg == "--simple-io") {
            params.simple_io = true;
        } else if (arg == "-cb" || arg == "--cont-batching") {
            params.cont_batching = true;
        } else if (arg == "--color") {
            params.use_color = true;
        } else if (arg == "--mlock") {
            params.use_mlock = true;
        } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
            params.n_gpu_layers = std::stoi(argv[i]);
#else
            fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
            fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
        } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
            params.n_gpu_layers_draft = std::stoi(argv[i]);
#else
            fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
            fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
        } else if (arg == "--main-gpu" || arg == "-mg") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
#ifdef GGML_USE_CUBLAS
            params.main_gpu = std::stoi(argv[i]);
#else
            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
#endif
        } else if (arg == "--tensor-split" || arg == "-ts") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
#ifdef GGML_USE_CUBLAS
            std::string arg_next = argv[i];

            // split string by , and /
            const std::regex regex{R"([,/]+)"};
            std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
            std::vector<std::string> split_arg{it, {}};
            GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);

            for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
                if (i < split_arg.size()) {
                    params.tensor_split[i] = std::stof(split_arg[i]);
                } else {
                    params.tensor_split[i] = 0.0f;
                }
            }
#else
            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
#endif // GGML_USE_CUBLAS
        } else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
#ifdef GGML_USE_CUBLAS
            params.mul_mat_q = false;
#else
            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
#endif // GGML_USE_CUBLAS
        } else if (arg == "--no-mmap") {
            params.use_mmap = false;
        } else if (arg == "--numa") {
            params.numa = true;
        } else if (arg == "--verbose-prompt") {
            params.verbose_prompt = true;
        } else if (arg == "-r" || arg == "--reverse-prompt") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.antiprompt.push_back(argv[i]);
        } else if (arg == "-ld" || arg == "--logdir") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.logdir = argv[i];

            if (params.logdir.back() != DIRECTORY_SEPARATOR) {
                params.logdir += DIRECTORY_SEPARATOR;
            }
        } else if (arg == "--perplexity" || arg == "--all-logits") {
            params.logits_all = true;
        } else if (arg == "--ppl-stride") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.ppl_stride = std::stoi(argv[i]);
        } else if (arg == "--ppl-output-type") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.ppl_output_type = std::stoi(argv[i]);
        } else if (arg == "--hellaswag") {
            params.hellaswag = true;
        } else if (arg == "--hellaswag-tasks") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.hellaswag_tasks = std::stoi(argv[i]);
        } else if (arg == "--ignore-eos") {
            params.ignore_eos = true;
        } else if (arg == "--no-penalize-nl") {
            params.penalize_nl = false;
        } else if (arg == "-l" || arg == "--logit-bias") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            std::stringstream ss(argv[i]);
            llama_token key;
            char sign;
            std::string value_str;
            try {
                if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
                    params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
                } else {
                    throw std::exception();
                }
            } catch (const std::exception&) {
                invalid_param = true;
                break;
            }
        } else if (arg == "-h" || arg == "--help") {
            gpt_print_usage(argc, argv, default_params);
#ifndef LOG_DISABLE_LOGS
            log_print_usage();
#endif // LOG_DISABLE_LOGS
            exit(0);
        } else if (arg == "--random-prompt") {
            params.random_prompt = true;
        } else if (arg == "--in-prefix-bos") {
            params.input_prefix_bos = true;
        } else if (arg == "--in-prefix") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.input_prefix = argv[i];
        } else if (arg == "--in-suffix") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.input_suffix = argv[i];
        } else if (arg == "--grammar") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.grammar = argv[i];
        } else if (arg == "--grammar-file") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            std::ifstream file(argv[i]);
            if (!file) {
                fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
                invalid_param = true;
                break;
            }
            std::copy(
                std::istreambuf_iterator<char>(file),
                std::istreambuf_iterator<char>(),
                std::back_inserter(params.grammar)
            );
#ifndef LOG_DISABLE_LOGS
        // Parse args for logging parameters
        } else if ( log_param_single_parse( argv[i] ) ) {
            // Do nothing, log_param_single_parse automatically does it's thing
            //  and returns if a match was found and parsed.
        } else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) {
            // We have a matching known parameter requiring an argument,
            //  now we need to check if there is anything after this argv
            //  and flag invalid_param or parse it.
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) {
                invalid_param = true;
                break;
            }
        // End of Parse args for logging parameters
#endif // LOG_DISABLE_LOGS
        } else {
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
            gpt_print_usage(argc, argv, default_params);
            exit(1);
        }
    }
    if (invalid_param) {
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
        gpt_print_usage(argc, argv, default_params);
        exit(1);
    }
    if (params.prompt_cache_all &&
            (params.interactive || params.interactive_first ||
             params.instruct)) {
        fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n");
        gpt_print_usage(argc, argv, default_params);
        exit(1);
    }

    if (params.escape) {
        process_escapes(params.prompt);
        process_escapes(params.input_prefix);
        process_escapes(params.input_suffix);
        for (auto & antiprompt : params.antiprompt) {
            process_escapes(antiprompt);
        }
    }

    return true;
}

void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
    printf("usage: %s [options]\n", argv[0]);
    printf("\n");
    printf("options:\n");
    printf("  -h, --help            show this help message and exit\n");
    printf("  -i, --interactive     run in interactive mode\n");
    printf("  --interactive-first   run in interactive mode and wait for input right away\n");
    printf("  -ins, --instruct      run in instruction mode (use with Alpaca models)\n");
    printf("  --multiline-input     allows you to write or paste multiple lines without ending each in '\\'\n");
    printf("  -r PROMPT, --reverse-prompt PROMPT\n");
    printf("                        halt generation at PROMPT, return control in interactive mode\n");
    printf("                        (can be specified more than once for multiple prompts).\n");
    printf("  --color               colorise output to distinguish prompt and user input from generations\n");
    printf("  -s SEED, --seed SEED  RNG seed (default: -1, use random seed for < 0)\n");
    printf("  -t N, --threads N     number of threads to use during generation (default: %d)\n", params.n_threads);
    printf("  -tb N, --threads-batch N\n");
    printf("                        number of threads to use during batch and prompt processing (default: same as --threads)\n");
    printf("  -p PROMPT, --prompt PROMPT\n");
    printf("                        prompt to start generation with (default: empty)\n");
    printf("  -e, --escape          process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
    printf("  --prompt-cache FNAME  file to cache prompt state for faster startup (default: none)\n");
    printf("  --prompt-cache-all    if specified, saves user input and generations to cache as well.\n");
    printf("                        not supported with --interactive or other interactive options\n");
    printf("  --prompt-cache-ro     if specified, uses the prompt cache but does not update it.\n");
    printf("  --random-prompt       start with a randomized prompt.\n");
    printf("  --in-prefix-bos       prefix BOS to user inputs, preceding the `--in-prefix` string\n");
    printf("  --in-prefix STRING    string to prefix user inputs with (default: empty)\n");
    printf("  --in-suffix STRING    string to suffix after user inputs with (default: empty)\n");
    printf("  -f FNAME, --file FNAME\n");
    printf("                        prompt file to start generation.\n");
    printf("  -n N, --n-predict N   number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
    printf("  -c N, --ctx-size N    size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
    printf("  -b N, --batch-size N  batch size for prompt processing (default: %d)\n", params.n_batch);
    printf("  --top-k N             top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
    printf("  --top-p N             top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
    printf("  --tfs N               tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
    printf("  --typical N           locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
    printf("  --repeat-last-n N     last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
    printf("  --repeat-penalty N    penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
    printf("  --presence-penalty N  repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
    printf("  --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
    printf("  --mirostat N          use Mirostat sampling.\n");
    printf("                        Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
    printf("                        (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
    printf("  --mirostat-lr N       Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
    printf("  --mirostat-ent N      Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
    printf("  -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
    printf("                        modifies the likelihood of token appearing in the completion,\n");
    printf("                        i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
    printf("                        or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
    printf("  --grammar GRAMMAR     BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
    printf("  --grammar-file FNAME  file to read grammar from\n");
    printf("  --cfg-negative-prompt PROMPT\n");
    printf("                        negative prompt to use for guidance. (default: empty)\n");
    printf("  --cfg-negative-prompt-file FNAME\n");
    printf("                        negative prompt file to use for guidance. (default: empty)\n");
    printf("  --cfg-scale N         strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
    printf("  --rope-scale N        RoPE context linear scaling factor, inverse of --rope-freq-scale\n");
    printf("  --rope-freq-base N    RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
    printf("  --rope-freq-scale N   RoPE frequency linear scaling factor (default: loaded from model)\n");
    printf("  --ignore-eos          ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
    printf("  --no-penalize-nl      do not penalize newline token\n");
    printf("  --memory-f32          use f32 instead of f16 for memory key+value (default: disabled)\n");
    printf("                        not recommended: doubles context memory required and no measurable increase in quality\n");
    printf("  --temp N              temperature (default: %.1f)\n", (double)params.temp);
    printf("  --logits-all          return logits for all tokens in the batch (default: disabled)\n");
    printf("  --hellaswag           compute HellaSwag score over random tasks from datafile supplied with -f\n");
    printf("  --hellaswag-tasks N   number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
    printf("  --keep N              number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
    printf("  --draft N             number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
    printf("  --chunks N            max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
    printf("  -np N, --parallel N   number of parallel sequences to decode (default: %d)\n", params.n_parallel);
    printf("  -ns N, --sequences N  number of sequences to decode (default: %d)\n", params.n_sequences);
    printf("  -cb, --cont-batching  enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
    if (llama_mlock_supported()) {
        printf("  --mlock               force system to keep model in RAM rather than swapping or compressing\n");
    }
    if (llama_mmap_supported()) {
        printf("  --no-mmap             do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
    }
    printf("  --numa                attempt optimizations that help on some NUMA systems\n");
    printf("                        if run without this previously, it is recommended to drop the system page cache before using this\n");
    printf("                        see https://github.com/ggerganov/llama.cpp/issues/1437\n");
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
    printf("  -ngl N, --n-gpu-layers N\n");
    printf("                        number of layers to store in VRAM\n");
    printf("  -ngld N, --n-gpu-layers-draft N\n");
    printf("                        number of layers to store in VRAM for the draft model\n");
    printf("  -ts SPLIT --tensor-split SPLIT\n");
    printf("                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
    printf("  -mg i, --main-gpu i   the GPU to use for scratch and small tensors\n");
#ifdef GGML_USE_CUBLAS
    printf("  -nommq, --no-mul-mat-q\n");
    printf("                        use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
    printf("                        Not recommended since this is both slower and uses more VRAM.\n");
#endif // GGML_USE_CUBLAS
#endif
    printf("  --verbose-prompt      print prompt before generation\n");
    fprintf(stderr, "  --simple-io           use basic IO for better compatibility in subprocesses and limited consoles\n");
    printf("  --lora FNAME          apply LoRA adapter (implies --no-mmap)\n");
    printf("  --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
    printf("  --lora-base FNAME     optional model to use as a base for the layers modified by the LoRA adapter\n");
    printf("  -m FNAME, --model FNAME\n");
    printf("                        model path (default: %s)\n", params.model.c_str());
    printf("  -md FNAME, --model-draft FNAME\n");
    printf("                        draft model for speculative decoding (default: %s)\n", params.model.c_str());
    printf("  -ld LOGDIR, --logdir LOGDIR\n");
    printf("                        path under which to save YAML logs (no logging if unset)\n");
    printf("\n");
}

std::string get_system_info(const gpt_params & params) {
    std::ostringstream os;

    os << "system_info: n_threads = " << params.n_threads;
    if (params.n_threads_batch != -1) {
        os << " (n_threads_batch = " << params.n_threads_batch << ")";
    }
    os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();

    return os.str();
}

std::string gpt_random_prompt(std::mt19937 & rng) {
    const int r = rng() % 10;
    switch (r) {
        case 0: return "So";
        case 1: return "Once upon a time";
        case 2: return "When";
        case 3: return "The";
        case 4: return "After";
        case 5: return "If";
        case 6: return "import";
        case 7: return "He";
        case 8: return "She";
        case 9: return "They";
    }

    GGML_UNREACHABLE();
}

//
// Model utils
//

struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
    auto mparams = llama_model_default_params();

    if (params.n_gpu_layers != -1) {
        mparams.n_gpu_layers = params.n_gpu_layers;
    }
    mparams.main_gpu        = params.main_gpu;
    mparams.tensor_split    = params.tensor_split;
    mparams.use_mmap        = params.use_mmap;
    mparams.use_mlock       = params.use_mlock;

    return mparams;
}

struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
    auto cparams = llama_context_default_params();

    cparams.n_ctx           = params.n_ctx;
    cparams.n_batch         = params.n_batch;
    cparams.n_threads       = params.n_threads;
    cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
    cparams.mul_mat_q       = params.mul_mat_q;
    cparams.seed            = params.seed;
    cparams.f16_kv          = params.memory_f16;
    cparams.logits_all      = params.logits_all;
    cparams.embedding       = params.embedding;
    cparams.rope_freq_base  = params.rope_freq_base;
    cparams.rope_freq_scale = params.rope_freq_scale;

    return cparams;
}

std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
    auto mparams = llama_model_params_from_gpt_params(params);

    llama_model * model  = llama_load_model_from_file(params.model.c_str(), mparams);
    if (model == NULL) {
        fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
        return std::make_tuple(nullptr, nullptr);
    }

    auto cparams = llama_context_params_from_gpt_params(params);

    llama_context * lctx = llama_new_context_with_model(model, cparams);
    if (lctx == NULL) {
        fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
        llama_free_model(model);
        return std::make_tuple(nullptr, nullptr);
    }

    for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
        const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
        float lora_scale = std::get<1>(params.lora_adapter[i]);
        int err = llama_model_apply_lora_from_file(model,
                                             lora_adapter.c_str(),
                                             lora_scale,
                                             ((i > 0) || params.lora_base.empty())
                                                ? NULL
                                                : params.lora_base.c_str(),
                                             params.n_threads);
        if (err != 0) {
            fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
            llama_free(lctx);
            llama_free_model(model);
            return std::make_tuple(nullptr, nullptr);
        }
    }

    if (params.ignore_eos) {
        params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
    }

    {
        LOG("warming up the model with an empty run\n");

        std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
        llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
        llama_kv_cache_tokens_rm(lctx, -1, -1);
        llama_reset_timings(lctx);
    }

    return std::make_tuple(model, lctx);
}

//
// Vocab utils
//

std::vector<llama_token> llama_tokenize(
  const struct llama_context * ctx,
           const std::string & text,
                        bool   add_bos) {
    return llama_tokenize(llama_get_model(ctx), text, add_bos);
}

std::vector<llama_token> llama_tokenize(
    const struct llama_model * model,
           const std::string & text,
                        bool   add_bos) {
    // upper limit for the number of tokens
    int n_tokens = text.length() + add_bos;
    std::vector<llama_token> result(n_tokens);
    n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
    if (n_tokens < 0) {
        result.resize(-n_tokens);
        int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
        GGML_ASSERT(check == -n_tokens);
    } else {
        result.resize(n_tokens);
    }
    return result;
}

std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
    std::vector<char> result(8, 0);
    const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
    if (n_tokens < 0) {
        result.resize(-n_tokens);
        int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
        GGML_ASSERT(check == -n_tokens);
    } else {
        result.resize(n_tokens);
    }

    return std::string(result.data(), result.size());
}

std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
    const llama_token bos_id = llama_token_bos(ctx);

    std::string piece;
    std::string result;

    for (size_t i = 0; i < tokens.size(); ++i) {
        piece = llama_token_to_piece(ctx, tokens[i]);

        // remove the leading space of the first non-BOS token
        if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
            piece = piece.substr(1);
        }

        result += piece;
    }

    return result;
}

std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
    std::string piece;
    std::string result;

    for (size_t i = 0; i < tokens.size(); ++i) {
        piece = llama_token_to_piece(ctx, tokens[i]);

        result += piece;
    }

    // NOTE: the original tokenizer decodes bytes after collecting the pieces.
    return result;
}

//
// Sampling utils
//

llama_token llama_sample_token(
                  struct llama_context * ctx,
                  struct llama_context * ctx_guidance,
                  struct llama_grammar * grammar,
               const struct gpt_params & params,
        const std::vector<llama_token> & last_tokens,
         std::vector<llama_token_data> & candidates,
                                   int   idx) {
    const int n_ctx   = llama_n_ctx(ctx);
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));

    const float   temp            = params.temp;
    const int32_t top_k           = params.top_k <= 0 ? n_vocab : params.top_k;
    const float   top_p           = params.top_p;
    const float   tfs_z           = params.tfs_z;
    const float   typical_p       = params.typical_p;
    const int32_t repeat_last_n   = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
    const float   repeat_penalty  = params.repeat_penalty;
    const float   alpha_presence  = params.presence_penalty;
    const float   alpha_frequency = params.frequency_penalty;
    const int     mirostat        = params.mirostat;
    const float   mirostat_tau    = params.mirostat_tau;
    const float   mirostat_eta    = params.mirostat_eta;
    const bool    penalize_nl     = params.penalize_nl;

    llama_token id = 0;

    float * logits = llama_get_logits_ith(ctx, idx);

    // Apply params.logit_bias map
    for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
        logits[it->first] += it->second;
    }

    candidates.clear();
    for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
        candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
    }

    llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };

    if (ctx_guidance) {
        llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
    }

    // apply penalties
    if (!last_tokens.empty()) {
        const float nl_logit = logits[llama_token_nl(ctx)];
        const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);

        llama_sample_repetition_penalty(ctx, &cur_p,
                last_tokens.data() + last_tokens.size() - last_n_repeat,
                last_n_repeat, repeat_penalty);
        llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
                last_tokens.data() + last_tokens.size() - last_n_repeat,
                last_n_repeat, alpha_frequency, alpha_presence);

        if (!penalize_nl) {
            for (size_t idx = 0; idx < cur_p.size; idx++) {
                if (cur_p.data[idx].id == llama_token_nl(ctx)) {
                    cur_p.data[idx].logit = nl_logit;
                    break;
                }
            }
        }
    }

    if (grammar != NULL) {
        llama_sample_grammar(ctx, &cur_p, grammar);
    }

    if (temp <= 0) {
        // Greedy sampling
        id = llama_sample_token_greedy(ctx, &cur_p);
    } else {
        if (mirostat == 1) {
            static float mirostat_mu = 2.0f * mirostat_tau;
            const int mirostat_m = 100;
            llama_sample_temp(ctx, &cur_p, temp);
            id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
        } else if (mirostat == 2) {
            static float mirostat_mu = 2.0f * mirostat_tau;
            llama_sample_temp(ctx, &cur_p, temp);
            id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
        } else {
            // Temperature sampling
            size_t min_keep = std::max(1, params.n_probs);
            llama_sample_top_k      (ctx, &cur_p, top_k, min_keep);
            llama_sample_tail_free  (ctx, &cur_p, tfs_z, min_keep);
            llama_sample_typical    (ctx, &cur_p, typical_p, min_keep);
            llama_sample_top_p      (ctx, &cur_p, top_p, min_keep);
            llama_sample_temp(ctx, &cur_p, temp);

            {
                const int n_top = 10;
                LOG("top %d candidates:\n", n_top);

                for (int i = 0; i < n_top; i++) {
                    const llama_token id = cur_p.data[i].id;
                    LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
                }
            }

            id = llama_sample_token(ctx, &cur_p);

            LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
        }
    }
    // printf("`%d`", candidates_p.size);

    if (grammar != NULL) {
        llama_grammar_accept_token(ctx, grammar, id);
    }

    return id;
}

//
// YAML utils
//

// returns true if successful, false otherwise
bool create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
    std::wstring wpath = converter.from_bytes(path);

    // if the path already exists, check whether it's a directory
    const DWORD attributes = GetFileAttributesW(wpath.c_str());
    if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
        return true;
    }

    size_t pos_slash = 0;

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
        const std::wstring subpath = wpath.substr(0, pos_slash);
        const wchar_t * test = subpath.c_str();

        const bool success = CreateDirectoryW(test, NULL);
        if (!success) {
            const DWORD error = GetLastError();

            // if the path already exists, ensure that it's a directory
            if (error == ERROR_ALREADY_EXISTS) {
                const DWORD attributes = GetFileAttributesW(subpath.c_str());
                if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
                    return false;
                }
            } else {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#else
    // if the path already exists, check whether it's a directory
    struct stat info;
    if (stat(path.c_str(), &info) == 0) {
        return S_ISDIR(info.st_mode);
    }

    size_t pos_slash = 1; // skip leading slashes for directory creation

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
        const std::string subpath = path.substr(0, pos_slash);
        struct stat info;

        // if the path already exists, ensure that it's a directory
        if (stat(subpath.c_str(), &info) == 0) {
            if (!S_ISDIR(info.st_mode)) {
                return false;
            }
        } else {
            // create parent directories
            const int ret = mkdir(subpath.c_str(), 0755);
            if (ret != 0) {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#endif // _WIN32
}

void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
    if (data.empty()) {
        fprintf(stream, "%s:\n", prop_name);
        return;
    }

    fprintf(stream, "%s: [", prop_name);
    for (size_t i = 0; i < data.size() - 1; ++i) {
        fprintf(stream, "%e, ", data[i]);
    }
    fprintf(stream, "%e]\n", data.back());
}

void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
    if (data.empty()) {
        fprintf(stream, "%s:\n", prop_name);
        return;
    }

    fprintf(stream, "%s: [", prop_name);
    for (size_t i = 0; i < data.size() - 1; ++i) {
        fprintf(stream, "%d, ", data[i]);
    }
    fprintf(stream, "%d]\n", data.back());
}

void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
    std::string data_str(data == NULL ? "" : data);

    if (data_str.empty()) {
        fprintf(stream, "%s:\n", prop_name);
        return;
    }

    size_t pos_start = 0;
    size_t pos_found = 0;

    if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
        data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
        data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
        data_str = "\"" + data_str + "\"";
        fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
        return;
    }

    if (data_str.find('\n') == std::string::npos) {
        fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
        return;
    }

    fprintf(stream, "%s: |\n", prop_name);
    while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
        fprintf(stream, "  %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
        pos_start = pos_found + 1;
    }
}

std::string get_sortable_timestamp() {
    using clock = std::chrono::system_clock;

    const clock::time_point current_time = clock::now();
    const time_t as_time_t = clock::to_time_t(current_time);
    char timestamp_no_ns[100];
    std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));

    const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
        current_time.time_since_epoch() % 1000000000).count();
    char timestamp_ns[11];
    snprintf(timestamp_ns, 11, "%09" PRId64, ns);

    return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}

void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
                               const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
    fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
    fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
    fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
    fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
    fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
    fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
    fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
    fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
    fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
    fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
    fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
    fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
    fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
    fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
    fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
    fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
    fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
    fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
    fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
    fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");

#ifdef NDEBUG
    fprintf(stream, "debug: false\n");
#else
    fprintf(stream, "debug: true\n");
#endif // NDEBUG

    fprintf(stream, "model_desc: %s\n", model_desc);
    fprintf(stream, "n_vocab: %d  # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));

#ifdef __OPTIMIZE__
    fprintf(stream, "optimize: true\n");
#else
    fprintf(stream, "optimize: false\n");
#endif // __OPTIMIZE__

    fprintf(stream, "time: %s\n", timestamp.c_str());

    fprintf(stream, "\n");
    fprintf(stream, "###############\n");
    fprintf(stream, "# User Inputs #\n");
    fprintf(stream, "###############\n");
    fprintf(stream, "\n");

    fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
    fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
    dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str());
    fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale);
    fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
    fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
    fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
    fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
    fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
    fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty);
    dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
    fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
    fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
    fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);

    const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx));
    const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY;
    fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");

    dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
    fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
    dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
    fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
    fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
    fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
    fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
    fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());

    fprintf(stream, "logit_bias:\n");
    for (std::pair<llama_token, float> lb : params.logit_bias) {
        if (ignore_eos && lb.first == logit_bias_eos->first) {
            continue;
        }
        fprintf(stream, "  %d: %f", lb.first, lb.second);
    }

    fprintf(stream, "lora:\n");
    for (std::tuple<std::string, float> la : params.lora_adapter) {
        if (std::get<1>(la) != 1.0f) {
            continue;
        }
        fprintf(stream, "  - %s\n", std::get<0>(la).c_str());
    }
    fprintf(stream, "lora_scaled:\n");
    for (std::tuple<std::string, float> la : params.lora_adapter) {
        if (std::get<1>(la) == 1.0f) {
            continue;
        }
        fprintf(stream, "  - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
    }
    fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
    fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
    fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
    fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat);
    fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau);
    fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta);
    fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
    fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
    fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
    fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
    fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
    fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
    fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
    fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
    fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
    fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false");
    fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
    fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
    fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
    fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty);
    dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
    fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
    fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
    fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
    dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
    fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
    fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty);

    fprintf(stream, "reverse_prompt:\n");
    for (std::string ap : params.antiprompt) {
        size_t pos = 0;
        while ((pos = ap.find('\n', pos)) != std::string::npos) {
            ap.replace(pos, 1, "\\n");
            pos += 1;
        }

        fprintf(stream, "  - %s\n", ap.c_str());
    }

    fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
    fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
    fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
    fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
    fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
    fprintf(stream, "temp: %f # default: 0.8\n", params.temp);

    const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
    dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);

    fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z);
    fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
    fprintf(stream, "top_k: %d # default: 40\n", params.top_k);
    fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p);
    fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p);
    fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
}