Spaces:
Build error
Build error
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example: | |
// | |
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ | |
// | |
// | |
// 2-6 bit quantization in super-blocks | |
// | |
// | |
// ===================== Helper functions | |
// | |
static inline int nearest_int(float fval) { | |
assert(fval <= 4194303.f); | |
float val = fval + 12582912.f; | |
int i; memcpy(&i, &val, sizeof(int)); | |
return (i & 0x007fffff) - 0x00400000; | |
} | |
static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) { | |
float max = 0; | |
float amax = 0; | |
for (int i = 0; i < n; ++i) { | |
float ax = fabsf(x[i]); | |
if (ax > amax) { amax = ax; max = x[i]; } | |
} | |
if (!amax) { // all zero | |
for (int i = 0; i < n; ++i) { | |
L[i] = 0; | |
} | |
return 0.f; | |
} | |
float iscale = -nmax / max; | |
if (rmse_type == 0) { | |
for (int i = 0; i < n; ++i) { | |
int l = nearest_int(iscale * x[i]); | |
L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); | |
} | |
return 1/iscale; | |
} | |
int weight_type = rmse_type%2; | |
float sumlx = 0; | |
float suml2 = 0; | |
for (int i = 0; i < n; ++i) { | |
int l = nearest_int(iscale * x[i]); | |
l = MAX(-nmax, MIN(nmax-1, l)); | |
L[i] = l + nmax; | |
float w = weight_type == 1 ? x[i] * x[i] : 1; | |
sumlx += w*x[i]*l; | |
suml2 += w*l*l; | |
} | |
float scale = sumlx/suml2; | |
float best = scale * sumlx; | |
for (int itry = 0; itry < 3; ++itry) { | |
iscale = 1/scale; | |
float slx = 0; | |
float sl2 = 0; | |
bool changed = false; | |
for (int i = 0; i < n; ++i) { | |
int l = nearest_int(iscale * x[i]); | |
l = MAX(-nmax, MIN(nmax-1, l)); | |
if (l + nmax != L[i]) { changed = true; } | |
float w = weight_type == 1 ? x[i] * x[i] : 1.f; | |
slx += w*x[i]*l; | |
sl2 += w*l*l; | |
} | |
if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; } | |
for (int i = 0; i < n; ++i) { | |
int l = nearest_int(iscale * x[i]); | |
L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); | |
} | |
sumlx = slx; suml2 = sl2; | |
scale = sumlx/suml2; | |
best = scale * sumlx; | |
} | |
for (int itry = 0; itry < 5; ++itry) { | |
int n_changed = 0; | |
for (int i = 0; i < n; ++i) { | |
float w = weight_type == 1 ? x[i]*x[i] : 1; | |
int l = L[i] - nmax; | |
float slx = sumlx - w*x[i]*l; | |
if (slx > 0) { | |
float sl2 = suml2 - w*l*l; | |
int new_l = nearest_int(x[i] * sl2 / slx); | |
new_l = MAX(-nmax, MIN(nmax-1, new_l)); | |
if (new_l != l) { | |
slx += w*x[i]*new_l; | |
sl2 += w*new_l*new_l; | |
if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) { | |
L[i] = nmax + new_l; sumlx = slx; suml2 = sl2; | |
scale = sumlx / suml2; best = scale * sumlx; | |
++n_changed; | |
} | |
} | |
} | |
} | |
if (!n_changed) { break; } | |
} | |
if (rmse_type < 3) { | |
return scale; | |
} | |
for (int is = -4; is <= 4; ++is) { | |
if (is == 0) { | |
continue; | |
} | |
iscale = -(nmax + 0.1f*is) / max; | |
sumlx = suml2 = 0; | |
for (int i = 0; i < n; ++i) { | |
int l = nearest_int(iscale * x[i]); | |
l = MAX(-nmax, MIN(nmax-1, l)); | |
float w = weight_type == 1 ? x[i] * x[i] : 1; | |
sumlx += w*x[i]*l; | |
suml2 += w*l*l; | |
} | |
if (suml2 > 0 && sumlx*sumlx > best*suml2) { | |
for (int i = 0; i < n; ++i) { | |
int l = nearest_int(iscale * x[i]); | |
L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); | |
} | |
scale = sumlx/suml2; best = scale*sumlx; | |
} | |
} | |
return scale; | |
} | |
static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) { | |
float max = 0; | |
float amax = 0; | |
for (int i = 0; i < n; ++i) { | |
float ax = fabsf(x[i]); | |
if (ax > amax) { amax = ax; max = x[i]; } | |
} | |
if (!amax) { // all zero | |
for (int i = 0; i < n; ++i) { L[i] = 0; } | |
return 0.f; | |
} | |
float iscale = -nmax / max; | |
if (do_rmse) { | |
float sumlx = 0; | |
float suml2 = 0; | |
for (int i = 0; i < n; ++i) { | |
int l = nearest_int(iscale * x[i]); | |
l = MAX(-nmax, MIN(nmax-1, l)); | |
L[i] = l; | |
float w = x[i]*x[i]; | |
sumlx += w*x[i]*l; | |
suml2 += w*l*l; | |
} | |
for (int itry = 0; itry < 5; ++itry) { | |
int n_changed = 0; | |
for (int i = 0; i < n; ++i) { | |
float w = x[i]*x[i]; | |
float slx = sumlx - w*x[i]*L[i]; | |
if (slx > 0) { | |
float sl2 = suml2 - w*L[i]*L[i]; | |
int new_l = nearest_int(x[i] * sl2 / slx); | |
new_l = MAX(-nmax, MIN(nmax-1, new_l)); | |
if (new_l != L[i]) { | |
slx += w*x[i]*new_l; | |
sl2 += w*new_l*new_l; | |
if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) { | |
L[i] = new_l; sumlx = slx; suml2 = sl2; | |
++n_changed; | |
} | |
} | |
} | |
} | |
if (!n_changed) { | |
break; | |
} | |
} | |
for (int i = 0; i < n; ++i) { | |
L[i] += nmax; | |
} | |
return sumlx / suml2; | |
} | |
for (int i = 0; i < n; ++i) { | |
int l = nearest_int(iscale * x[i]); | |
l = MAX(-nmax, MIN(nmax-1, l)); | |
L[i] = l + nmax; | |
} | |
return 1/iscale; | |
} | |
static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) { | |
float min = x[0]; | |
float max = x[0]; | |
for (int i = 1; i < n; ++i) { | |
if (x[i] < min) min = x[i]; | |
if (x[i] > max) max = x[i]; | |
} | |
if (max == min) { | |
for (int i = 0; i < n; ++i) L[i] = 0; | |
*the_min = 0; | |
return 0.f; | |
} | |
if (min > 0) min = 0; | |
float iscale = nmax/(max - min); | |
float scale = 1/iscale; | |
for (int itry = 0; itry < ntry; ++itry) { | |
float sumlx = 0; int suml2 = 0; | |
bool did_change = false; | |
for (int i = 0; i < n; ++i) { | |
int l = nearest_int(iscale*(x[i] - min)); | |
l = MAX(0, MIN(nmax, l)); | |
if (l != L[i]) { | |
L[i] = l; | |
did_change = true; | |
} | |
sumlx += (x[i] - min)*l; | |
suml2 += l*l; | |
} | |
scale = sumlx/suml2; | |
float sum = 0; | |
for (int i = 0; i < n; ++i) { | |
sum += x[i] - scale*L[i]; | |
} | |
min = sum/n; | |
if (min > 0) min = 0; | |
iscale = 1/scale; | |
if (!did_change) break; | |
} | |
*the_min = -min; | |
return scale; | |
} | |
static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) { | |
if (j < 4) { | |
*d = q[j] & 63; *m = q[j + 4] & 63; | |
} else { | |
*d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); | |
*m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); | |
} | |
} | |
//========================- 2-bit (de)-quantization | |
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
uint8_t L[QK_K]; | |
float mins[QK_K/16]; | |
float scales[QK_K/16]; | |
const float q4scale = 15.f; | |
for (int i = 0; i < nb; i++) { | |
float max_scale = 0; // as we are deducting the min, scales are always positive | |
float max_min = 0; | |
for (int j = 0; j < QK_K/16; ++j) { | |
scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5); | |
float scale = scales[j]; | |
if (scale > max_scale) { | |
max_scale = scale; | |
} | |
float min = mins[j]; | |
if (min > max_min) { | |
max_min = min; | |
} | |
} | |
if (max_scale > 0) { | |
float iscale = q4scale/max_scale; | |
for (int j = 0; j < QK_K/16; ++j) { | |
int l = nearest_int(iscale*scales[j]); | |
y[i].scales[j] = l; | |
} | |
y[i].d = ggml_fp32_to_fp16(max_scale/q4scale); | |
} else { | |
for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0; | |
y[i].d = ggml_fp32_to_fp16(0.f); | |
} | |
if (max_min > 0) { | |
float iscale = q4scale/max_min; | |
for (int j = 0; j < QK_K/16; ++j) { | |
int l = nearest_int(iscale*mins[j]); | |
y[i].scales[j] |= (l << 4); | |
} | |
y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale); | |
} else { | |
y[i].dmin = ggml_fp32_to_fp16(0.f); | |
} | |
for (int j = 0; j < QK_K/16; ++j) { | |
const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF); | |
if (!d) continue; | |
const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4); | |
for (int ii = 0; ii < 16; ++ii) { | |
int l = nearest_int((x[16*j + ii] + dm)/d); | |
l = MAX(0, MIN(3, l)); | |
L[16*j + ii] = l; | |
} | |
} | |
for (int j = 0; j < QK_K; j += 128) { | |
for (int l = 0; l < 32; ++l) { | |
y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); | |
} | |
} | |
for (int l = 0; l < 16; ++l) { | |
y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); | |
} | |
x += QK_K; | |
} | |
} | |
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
for (int i = 0; i < nb; i++) { | |
const float d = ggml_fp16_to_fp32(x[i].d); | |
const float min = ggml_fp16_to_fp32(x[i].dmin); | |
const uint8_t * q = x[i].qs; | |
int is = 0; | |
float dl, ml; | |
for (int n = 0; n < QK_K; n += 128) { | |
int shift = 0; | |
for (int j = 0; j < 4; ++j) { | |
uint8_t sc = x[i].scales[is++]; | |
dl = d * (sc & 0xF); ml = min * (sc >> 4); | |
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml; | |
sc = x[i].scales[is++]; | |
dl = d * (sc & 0xF); ml = min * (sc >> 4); | |
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml; | |
shift += 2; | |
} | |
q += 32; | |
} | |
float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4); | |
float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4); | |
float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4); | |
float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4); | |
for (int l = 0; l < 16; ++l) { | |
y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1; | |
y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2; | |
y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3; | |
y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4; | |
} | |
y += QK_K; | |
} | |
} | |
void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) { | |
quantize_row_q2_K_reference(x, vy, k); | |
} | |
size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { | |
const int nb = k / QK_K; | |
// TODO - collect histograms - although, at a second thought, I don't really care about them | |
(void)hist; | |
for (int j = 0; j < nb; j += k) { | |
block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K; | |
quantize_row_q2_K_reference(src + j, y, k); | |
} | |
return (n/QK_K*sizeof(block_q2_K)); | |
} | |
//========================= 3-bit (de)-quantization | |
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
int8_t L[QK_K]; | |
float scales[QK_K / 16]; | |
for (int i = 0; i < nb; i++) { | |
float max_scale = 0; | |
float amax = 0; | |
for (int j = 0; j < QK_K/16; ++j) { | |
scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true); | |
float scale = fabsf(scales[j]); | |
if (scale > amax) { | |
amax = scale; max_scale = scales[j]; | |
} | |
} | |
memset(y[i].scales, 0, 12); | |
if (max_scale) { | |
float iscale = -32.f/max_scale; | |
for (int j = 0; j < QK_K/16; ++j) { | |
int8_t l = nearest_int(iscale*scales[j]); | |
l = MAX(-32, MIN(31, l)) + 32; | |
if (j < 8) { | |
y[i].scales[j] = l & 0xF; | |
} else { | |
y[i].scales[j-8] |= ((l & 0xF) << 4); | |
} | |
l >>= 4; | |
y[i].scales[j%4 + 8] |= (l << (2*(j/4))); | |
} | |
y[i].d = ggml_fp32_to_fp16(1/iscale); | |
} else { | |
y[i].d = ggml_fp32_to_fp16(0.f); | |
} | |
int8_t sc; | |
for (int j = 0; j < QK_K/16; ++j) { | |
sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4; | |
sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32; | |
float d = ggml_fp16_to_fp32(y[i].d) * sc; | |
if (!d) { | |
continue; | |
} | |
for (int ii = 0; ii < 16; ++ii) { | |
int l = nearest_int(x[16*j + ii]/d); | |
l = MAX(-4, MIN(3, l)); | |
L[16*j + ii] = l + 4; | |
} | |
} | |
if (max_scale) { | |
float iscale = -8.f/max_scale; | |
for (int j = 0; j < QK_K/16; j+=2) { | |
int l1 = nearest_int(iscale*scales[j]); | |
l1 = 8 + MAX(-8, MIN(7, l1)); | |
int l2 = nearest_int(iscale*scales[j+1]); | |
l2 = 8 + MAX(-8, MIN(7, l2)); | |
y[i].scales[j/2] = l1 | (l2 << 4); | |
} | |
y[i].d = ggml_fp32_to_fp16(1/iscale); | |
} else { | |
for (int j = 0; j < QK_K/16; j+=2) { | |
y[i].scales[j/2] = 0; | |
} | |
y[i].d = ggml_fp32_to_fp16(0.f); | |
} | |
for (int j = 0; j < QK_K/16; ++j) { | |
int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4; | |
float d = ggml_fp16_to_fp32(y[i].d) * (s - 8); | |
if (!d) { | |
continue; | |
} | |
for (int ii = 0; ii < 16; ++ii) { | |
int l = nearest_int(x[16*j + ii]/d); | |
l = MAX(-4, MIN(3, l)); | |
L[16*j + ii] = l + 4; | |
} | |
} | |
memset(y[i].hmask, 0, QK_K/8); | |
// We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. | |
int m = 0; | |
uint8_t hm = 1; | |
for (int j = 0; j < QK_K; ++j) { | |
if (L[j] > 3) { | |
y[i].hmask[m] |= hm; | |
L[j] -= 4; | |
} | |
if (++m == QK_K/8) { | |
m = 0; hm <<= 1; | |
} | |
} | |
for (int j = 0; j < QK_K; j += 128) { | |
for (int l = 0; l < 32; ++l) { | |
y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); | |
} | |
} | |
for (int l = 0; l < 16; ++l) { | |
y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); | |
} | |
x += QK_K; | |
} | |
} | |
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
const uint32_t kmask1 = 0x03030303; | |
const uint32_t kmask2 = 0x0f0f0f0f; | |
uint32_t aux[4]; | |
const int8_t * scales = (const int8_t*)aux; | |
for (int i = 0; i < nb; i++) { | |
const float d_all = ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q = x[i].qs; | |
const uint8_t * restrict hm = x[i].hmask; | |
uint8_t m = 1; | |
memcpy(aux, x[i].scales, 12); | |
uint32_t tmp = aux[2]; | |
aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4); | |
aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4); | |
aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4); | |
aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4); | |
int is = 0; | |
float dl; | |
for (int n = 0; n < QK_K; n += 128) { | |
int shift = 0; | |
for (int j = 0; j < 4; ++j) { | |
dl = d_all * (scales[is++] - 32); | |
for (int l = 0; l < 16; ++l) { | |
*y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4)); | |
} | |
dl = d_all * (scales[is++] - 32); | |
for (int l = 0; l < 16; ++l) { | |
*y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4)); | |
} | |
shift += 2; | |
m <<= 1; | |
} | |
q += 32; | |
} | |
} | |
} | |
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) { | |
assert(k % QK_K == 0); | |
assert(QK_K == 64); | |
const int nb = k / QK_K; | |
for (int i = 0; i < nb; i++) { | |
const float d_all = ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q = x[i].qs; | |
const uint8_t * restrict hm = x[i].hmask; | |
const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); | |
const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); | |
const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8); | |
const float d4 = d_all * ((x[i].scales[1] >> 4) - 8); | |
for (int l=0; l<8; ++l) { | |
uint8_t h = hm[l]; | |
y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4)); | |
y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4)); | |
y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4)); | |
y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4)); | |
y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4)); | |
y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4)); | |
y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4)); | |
y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4)); | |
} | |
y += QK_K; | |
} | |
} | |
void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) { | |
quantize_row_q3_K_reference(x, vy, k); | |
} | |
size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { | |
const int nb = k / QK_K; | |
// TODO - collect histograms - although, at a second thought, I don't really care about them | |
(void)hist; | |
for (int j = 0; j < nb; j += k) { | |
block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K; | |
quantize_row_q3_K_reference(src + j, y, k); | |
} | |
return (n/QK_K*sizeof(block_q3_K)); | |
} | |
// ====================== 4-bit (de)-quantization | |
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
uint8_t L[QK_K]; | |
float mins[QK_K/32]; | |
float scales[QK_K/32]; | |
for (int i = 0; i < nb; i++) { | |
float max_scale = 0; // as we are deducting the min, scales are always positive | |
float max_min = 0; | |
for (int j = 0; j < QK_K/32; ++j) { | |
scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5); | |
float scale = scales[j]; | |
if (scale > max_scale) { | |
max_scale = scale; | |
} | |
float min = mins[j]; | |
if (min > max_min) { | |
max_min = min; | |
} | |
} | |
float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; | |
float inv_min = max_min > 0 ? 63.f/max_min : 0.f; | |
for (int j = 0; j < QK_K/32; ++j) { | |
uint8_t ls = nearest_int(inv_scale*scales[j]); | |
uint8_t lm = nearest_int(inv_min*mins[j]); | |
ls = MIN(63, ls); | |
lm = MIN(63, lm); | |
if (j < 4) { | |
y[i].scales[j] = ls; | |
y[i].scales[j+4] = lm; | |
} else { | |
y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); | |
y[i].scales[j-4] |= ((ls >> 4) << 6); | |
y[i].scales[j-0] |= ((lm >> 4) << 6); | |
} | |
} | |
y[i].d = ggml_fp32_to_fp16(max_scale/63.f); | |
y[i].dmin = ggml_fp32_to_fp16(max_min/63.f); | |
uint8_t sc, m; | |
for (int j = 0; j < QK_K/32; ++j) { | |
get_scale_min_k4(j, y[i].scales, &sc, &m); | |
const float d = ggml_fp16_to_fp32(y[i].d) * sc; | |
if (!d) continue; | |
const float dm = ggml_fp16_to_fp32(y[i].dmin) * m; | |
for (int ii = 0; ii < 32; ++ii) { | |
int l = nearest_int((x[32*j + ii] + dm)/d); | |
l = MAX(0, MIN(15, l)); | |
L[32*j + ii] = l; | |
} | |
} | |
const float s_factor = 15.f; | |
float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f; | |
float inv_min = max_min > 0 ? s_factor/max_min : 0.f; | |
int d1 = nearest_int(inv_scale*scales[0]); | |
int m1 = nearest_int(inv_min*mins[0]); | |
int d2 = nearest_int(inv_scale*scales[1]); | |
int m2 = nearest_int(inv_min*mins[1]); | |
y[i].scales[0] = d1 | (m1 << 4); | |
y[i].scales[1] = d2 | (m2 << 4); | |
y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor); | |
y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor); | |
float sumlx = 0; | |
int suml2 = 0; | |
for (int j = 0; j < QK_K/32; ++j) { | |
const uint8_t sd = y[i].scales[j] & 0xF; | |
const uint8_t sm = y[i].scales[j] >> 4; | |
const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd; | |
if (!d) continue; | |
const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm; | |
for (int ii = 0; ii < 32; ++ii) { | |
int l = nearest_int((x[32*j + ii] + m)/d); | |
l = MAX(0, MIN(15, l)); | |
L[32*j + ii] = l; | |
sumlx += (x[32*j + ii] + m)*l*sd; | |
suml2 += l*l*sd*sd; | |
} | |
} | |
if (suml2) { | |
y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2); | |
} | |
uint8_t * q = y[i].qs; | |
for (int j = 0; j < QK_K; j += 64) { | |
for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); | |
q += 32; | |
} | |
x += QK_K; | |
} | |
} | |
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
for (int i = 0; i < nb; i++) { | |
const uint8_t * q = x[i].qs; | |
const float d = ggml_fp16_to_fp32(x[i].d); | |
const float min = ggml_fp16_to_fp32(x[i].dmin); | |
int is = 0; | |
uint8_t sc, m; | |
for (int j = 0; j < QK_K; j += 64) { | |
get_scale_min_k4(is + 0, x[i].scales, &sc, &m); | |
const float d1 = d * sc; const float m1 = min * m; | |
get_scale_min_k4(is + 1, x[i].scales, &sc, &m); | |
const float d2 = d * sc; const float m2 = min * m; | |
for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1; | |
for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2; | |
q += 32; is += 2; | |
} | |
const float dall = ggml_fp16_to_fp32(x[i].d[0]); | |
const float mall = ggml_fp16_to_fp32(x[i].d[1]); | |
const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4); | |
const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4); | |
for (int l = 0; l < 32; ++l) { | |
y[l+ 0] = d1 * (q[l] & 0xF) - m1; | |
y[l+32] = d2 * (q[l] >> 4) - m2; | |
} | |
y += QK_K; | |
} | |
} | |
void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) { | |
assert(k % QK_K == 0); | |
block_q4_K * restrict y = vy; | |
quantize_row_q4_K_reference(x, y, k); | |
} | |
size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
(void)hist; // TODO: collect histograms | |
for (int j = 0; j < nb; j += k) { | |
block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K; | |
quantize_row_q4_K_reference(src + j, y, k); | |
} | |
return (n/QK_K*sizeof(block_q4_K)); | |
} | |
// ====================== 5-bit (de)-quantization | |
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
uint8_t L[QK_K]; | |
float mins[QK_K/32]; | |
float scales[QK_K/32]; | |
int8_t L[QK_K]; | |
float scales[QK_K/16]; | |
for (int i = 0; i < nb; i++) { | |
float max_scale = 0; // as we are deducting the min, scales are always positive | |
float max_min = 0; | |
for (int j = 0; j < QK_K/32; ++j) { | |
scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5); | |
float scale = scales[j]; | |
if (scale > max_scale) { | |
max_scale = scale; | |
} | |
float min = mins[j]; | |
if (min > max_min) { | |
max_min = min; | |
} | |
} | |
float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; | |
float inv_min = max_min > 0 ? 63.f/max_min : 0.f; | |
for (int j = 0; j < QK_K/32; ++j) { | |
uint8_t ls = nearest_int(inv_scale*scales[j]); | |
uint8_t lm = nearest_int(inv_min*mins[j]); | |
ls = MIN(63, ls); | |
lm = MIN(63, lm); | |
if (j < 4) { | |
y[i].scales[j] = ls; | |
y[i].scales[j+4] = lm; | |
} else { | |
y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); | |
y[i].scales[j-4] |= ((ls >> 4) << 6); | |
y[i].scales[j-0] |= ((lm >> 4) << 6); | |
} | |
} | |
y[i].d = ggml_fp32_to_fp16(max_scale/63.f); | |
y[i].dmin = ggml_fp32_to_fp16(max_min/63.f); | |
uint8_t sc, m; | |
for (int j = 0; j < QK_K/32; ++j) { | |
get_scale_min_k4(j, y[i].scales, &sc, &m); | |
const float d = ggml_fp16_to_fp32(y[i].d) * sc; | |
if (!d) continue; | |
const float dm = ggml_fp16_to_fp32(y[i].dmin) * m; | |
for (int ii = 0; ii < 32; ++ii) { | |
int l = nearest_int((x[32*j + ii] + dm)/d); | |
l = MAX(0, MIN(31, l)); | |
L[32*j + ii] = l; | |
} | |
} | |
uint8_t * restrict qh = y[i].qh; | |
uint8_t * restrict ql = y[i].qs; | |
memset(qh, 0, QK_K/8); | |
uint8_t m1 = 1, m2 = 2; | |
for (int n = 0; n < QK_K; n += 64) { | |
for (int j = 0; j < 32; ++j) { | |
int l1 = L[n + j]; | |
if (l1 > 15) { | |
l1 -= 16; qh[j] |= m1; | |
} | |
int l2 = L[n + j + 32]; | |
if (l2 > 15) { | |
l2 -= 16; qh[j] |= m2; | |
} | |
ql[j] = l1 | (l2 << 4); | |
} | |
m1 <<= 2; m2 <<= 2; | |
ql += 32; | |
} | |
float max_scale = 0, amax = 0; | |
for (int j = 0; j < QK_K/16; ++j) { | |
scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1); | |
float abs_scale = fabsf(scales[j]); | |
if (abs_scale > amax) { | |
amax = abs_scale; | |
max_scale = scales[j]; | |
} | |
} | |
float iscale = -128.f/max_scale; | |
for (int j = 0; j < QK_K/16; ++j) { | |
int l = nearest_int(iscale*scales[j]); | |
y[i].scales[j] = MAX(-128, MIN(127, l)); | |
} | |
y[i].d = ggml_fp32_to_fp16(1/iscale); | |
for (int j = 0; j < QK_K/16; ++j) { | |
const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j]; | |
if (!d) continue; | |
for (int ii = 0; ii < 16; ++ii) { | |
int l = nearest_int(x[16*j + ii]/d); | |
l = MAX(-16, MIN(15, l)); | |
L[16*j + ii] = l + 16; | |
} | |
} | |
uint8_t * restrict qh = y[i].qh; | |
uint8_t * restrict ql = y[i].qs; | |
memset(qh, 0, QK_K/8); | |
for (int j = 0; j < 32; ++j) { | |
int jm = j%8; | |
int is = j/8; | |
int l1 = L[j]; | |
if (l1 > 15) { | |
l1 -= 16; qh[jm] |= (1 << is); | |
} | |
int l2 = L[j + 32]; | |
if (l2 > 15) { | |
l2 -= 16; qh[jm] |= (1 << (4 + is)); | |
} | |
ql[j] = l1 | (l2 << 4); | |
} | |
x += QK_K; | |
} | |
} | |
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
for (int i = 0; i < nb; i++) { | |
const uint8_t * ql = x[i].qs; | |
const uint8_t * qh = x[i].qh; | |
const float d = ggml_fp16_to_fp32(x[i].d); | |
const float min = ggml_fp16_to_fp32(x[i].dmin); | |
int is = 0; | |
uint8_t sc, m; | |
uint8_t u1 = 1, u2 = 2; | |
for (int j = 0; j < QK_K; j += 64) { | |
get_scale_min_k4(is + 0, x[i].scales, &sc, &m); | |
const float d1 = d * sc; const float m1 = min * m; | |
get_scale_min_k4(is + 1, x[i].scales, &sc, &m); | |
const float d2 = d * sc; const float m2 = min * m; | |
for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1; | |
for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2; | |
ql += 32; is += 2; | |
u1 <<= 2; u2 <<= 2; | |
} | |
float d = ggml_fp16_to_fp32(x[i].d); | |
const int8_t * restrict s = x[i].scales; | |
for (int l = 0; l < 8; ++l) { | |
y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16)); | |
y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16)); | |
y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16)); | |
y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16)); | |
y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16)); | |
y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16)); | |
y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16)); | |
y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16)); | |
} | |
y += QK_K; | |
} | |
} | |
void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) { | |
assert(k % QK_K == 0); | |
block_q5_K * restrict y = vy; | |
quantize_row_q5_K_reference(x, y, k); | |
} | |
size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
(void)hist; | |
for (int j = 0; j < nb; j += k) { | |
block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K; | |
quantize_row_q5_K_reference(src + j, y, k); | |
} | |
return (n/QK_K*sizeof(block_q5_K)); | |
} | |
// ====================== 6-bit (de)-quantization | |
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
int8_t L[QK_K]; | |
float scales[QK_K/16]; | |
for (int i = 0; i < nb; i++) { | |
float max_scale = 0; | |
float max_abs_scale = 0; | |
for (int ib = 0; ib < QK_K/16; ++ib) { | |
const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1); | |
scales[ib] = scale; | |
const float abs_scale = fabsf(scale); | |
if (abs_scale > max_abs_scale) { | |
max_abs_scale = abs_scale; | |
max_scale = scale; | |
} | |
} | |
float iscale = -128.f/max_scale; | |
y[i].d = ggml_fp32_to_fp16(1/iscale); | |
for (int ib = 0; ib < QK_K/16; ++ib) { | |
y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib])); | |
} | |
for (int j = 0; j < QK_K/16; ++j) { | |
float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j]; | |
if (!d) { | |
continue; | |
} | |
for (int ii = 0; ii < 16; ++ii) { | |
int l = nearest_int(x[16*j + ii]/d); | |
l = MAX(-32, MIN(31, l)); | |
L[16*j + ii] = l + 32; | |
} | |
} | |
uint8_t * restrict ql = y[i].ql; | |
uint8_t * restrict qh = y[i].qh; | |
for (int j = 0; j < QK_K; j += 128) { | |
for (int l = 0; l < 32; ++l) { | |
const uint8_t q1 = L[j + l + 0] & 0xF; | |
const uint8_t q2 = L[j + l + 32] & 0xF; | |
const uint8_t q3 = L[j + l + 64] & 0xF; | |
const uint8_t q4 = L[j + l + 96] & 0xF; | |
ql[l+ 0] = q1 | (q3 << 4); | |
ql[l+32] = q2 | (q4 << 4); | |
qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6); | |
} | |
ql += 64; | |
qh += 32; | |
} | |
for (int l = 0; l < 32; ++l) { | |
const uint8_t q1 = L[l + 0] & 0xF; | |
const uint8_t q2 = L[l + 32] & 0xF; | |
ql[l] = q1 | (q2 << 4); | |
} | |
for (int l = 0; l < 16; ++l) { | |
qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6); | |
} | |
x += QK_K; | |
} | |
} | |
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
for (int i = 0; i < nb; i++) { | |
const float d = ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict ql = x[i].ql; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict sc = x[i].scales; | |
for (int n = 0; n < QK_K; n += 128) { | |
for (int l = 0; l < 32; ++l) { | |
int is = l/16; | |
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; | |
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; | |
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; | |
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; | |
y[l + 0] = d * sc[is + 0] * q1; | |
y[l + 32] = d * sc[is + 2] * q2; | |
y[l + 64] = d * sc[is + 4] * q3; | |
y[l + 96] = d * sc[is + 6] * q4; | |
} | |
y += 128; | |
ql += 64; | |
qh += 32; | |
sc += 8; | |
} | |
for (int l = 0; l < 16; ++l) { | |
const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; | |
const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; | |
const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; | |
const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; | |
y[l+ 0] = d * sc[0] * q1; | |
y[l+16] = d * sc[1] * q2; | |
y[l+32] = d * sc[2] * q3; | |
y[l+48] = d * sc[3] * q4; | |
} | |
y += 64; | |
} | |
} | |
void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) { | |
assert(k % QK_K == 0); | |
block_q6_K * restrict y = vy; | |
quantize_row_q6_K_reference(x, y, k); | |
} | |
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
(void)hist; // TODO | |
for (int j = 0; j < nb; j += k) { | |
block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K; | |
quantize_row_q6_K_reference(src + j, y, k); | |
} | |
return (n/QK_K*sizeof(block_q6_K)); | |
} | |
//===================================== Q8_K ============================================== | |
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
for (int i = 0; i < nb; i++) { | |
float max = 0; | |
float amax = 0; | |
for (int j = 0; j < QK_K; ++j) { | |
float ax = fabsf(x[j]); | |
if (ax > amax) { | |
amax = ax; max = x[j]; | |
} | |
} | |
if (!amax) { | |
y[i].d = 0; | |
memset(y[i].qs, 0, QK_K); | |
x += QK_K; | |
continue; | |
} | |
const float iscale = -128.f/max; | |
for (int j = 0; j < QK_K; ++j) { | |
int v = nearest_int(iscale*x[j]); | |
y[i].qs[j] = MIN(127, v); | |
} | |
for (int j = 0; j < QK_K/16; ++j) { | |
int sum = 0; | |
for (int ii = 0; ii < 16; ++ii) { | |
sum += y[i].qs[j*16 + ii]; | |
} | |
y[i].bsums[j] = sum; | |
} | |
y[i].d = 1/iscale; | |
x += QK_K; | |
} | |
} | |
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) { | |
assert(k % QK_K == 0); | |
const int nb = k / QK_K; | |
for (int i = 0; i < nb; i++) { | |
for (int j = 0; j < QK_K; ++j) { | |
*y++ = x[i].d * x[i].qs[j]; | |
} | |
} | |
} | |
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) { | |
quantize_row_q8_K_reference(x, y, k); | |
} | |
//===================================== Dot ptoducts ================================= | |
// | |
// Helper functions | |
// | |
// horizontally add 8 floats | |
static inline float hsum_float_8(const __m256 x) { | |
__m128 res = _mm256_extractf128_ps(x, 1); | |
res = _mm_add_ps(res, _mm256_castps256_ps128(x)); | |
res = _mm_add_ps(res, _mm_movehl_ps(res, res)); | |
res = _mm_add_ss(res, _mm_movehdup_ps(res)); | |
return _mm_cvtss_f32(res); | |
} | |
// shuffles to pick the required scales in dot products | |
static inline __m256i get_scale_shuffle_q3k(int i) { | |
static const uint8_t k_shuffle[128] = { | |
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, | |
4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, | |
8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, | |
12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15, | |
}; | |
return _mm256_loadu_si256((const __m256i*)k_shuffle + i); | |
} | |
static inline __m256i get_scale_shuffle_k4(int i) { | |
static const uint8_t k_shuffle[256] = { | |
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, | |
2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, | |
4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, | |
6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, | |
8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, | |
10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, | |
12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, | |
14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15 | |
}; | |
return _mm256_loadu_si256((const __m256i*)k_shuffle + i); | |
} | |
static inline __m128i get_scale_shuffle(int i) { | |
static const uint8_t k_shuffle[128] = { | |
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, | |
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, | |
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, | |
6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, | |
8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, | |
10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11, | |
12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13, | |
14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15 | |
}; | |
return _mm_loadu_si128((const __m128i*)k_shuffle + i); | |
} | |
void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
const block_q2_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
const uint8x16_t m3 = vdupq_n_u8(0x3); | |
const uint8x16_t m4 = vdupq_n_u8(0xF); | |
const int32x4_t vzero = vdupq_n_s32(0); | |
int8x16x2_t q2bytes; | |
uint8_t aux[16]; | |
float sum = 0; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
const uint8_t * restrict q2 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const uint8_t * restrict sc = x[i].scales; | |
const uint8x16_t mins_and_scales = vld1q_u8(sc); | |
const uint8x16_t scales = vandq_u8(mins_and_scales, m4); | |
vst1q_u8(aux, scales); | |
const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4); | |
const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums); | |
const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}; | |
const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])), | |
vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0]))); | |
const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])), | |
vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1]))); | |
sum += dmin * vaddvq_s32(vaddq_s32(s0, s1)); | |
int isum = 0; | |
int is = 0; | |
// We use this macro instead of a function call because for some reason | |
// the code runs 2-3% slower, even if the function is declared inline | |
for (int j = 0; j < QK_K/128; ++j) { | |
const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32; | |
int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32; | |
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3)); | |
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3)); | |
MULTIPLY_ACCUM_WITH_SCALE(0); | |
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2); | |
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4); | |
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6); | |
is += 8; | |
} | |
sum += d * isum; | |
} | |
*s = sum; | |
const __m256i m3 = _mm256_set1_epi8(3); | |
const __m128i m4 = _mm_set1_epi8(0xF); | |
__m256 acc = _mm256_setzero_ps(); | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
const uint8_t * restrict q2 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); | |
const __m128i scales8 = _mm_and_si128(mins_and_scales, m4); | |
const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); | |
const __m256i mins = _mm256_cvtepi8_epi16(mins8); | |
const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums)); | |
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc); | |
const __m256i all_scales = _mm256_cvtepi8_epi16(scales8); | |
const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); | |
const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); | |
const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)}; | |
__m256i sumi = _mm256_setzero_si256(); | |
for (int j = 0; j < QK_K/128; ++j) { | |
const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32; | |
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q2_0 = _mm256_and_si256(q2bits, m3); | |
const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3); | |
const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3); | |
const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3); | |
__m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0); | |
__m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1); | |
__m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2); | |
__m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3); | |
p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0); | |
p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1); | |
p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2); | |
p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3); | |
p0 = _mm256_add_epi32(p0, p1); | |
p2 = _mm256_add_epi32(p2, p3); | |
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2)); | |
} | |
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); | |
} | |
*s = hsum_float_8(acc); | |
const __m128i m3 = _mm_set1_epi8(0x3); | |
const __m128i m4 = _mm_set1_epi8(0xF); | |
const __m128i m2 = _mm_set1_epi8(0x2); | |
__m256 acc = _mm256_setzero_ps(); | |
for (int i = 0; i < nb; ++i) { | |
const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
const uint8_t * restrict q2 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
// load mins and scales from block_q2_K.scales[QK_K/16] | |
const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); | |
const __m128i scales16 = _mm_and_si128(mins_and_scales, m4); | |
const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); | |
const __m128i mins_0 = _mm_cvtepi8_epi16(mins16); | |
const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16)); | |
// summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2 | |
const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0])); | |
const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8])); | |
// sumf += -dmin * summs in 32bits*8 | |
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(_mm256_set_m128i(summs_1, summs_0))), acc); | |
const __m128i scales_0 = _mm_cvtepi8_epi16(scales16); | |
const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16)); | |
const __m128i scales[2] = { scales_0, scales_1 }; | |
__m128i sumi_0 = _mm_setzero_si128(); | |
__m128i sumi_1 = _mm_setzero_si128(); | |
for (int j = 0; j < QK_K/128; ++j) { | |
// load Q8 quants int8*16*8 from block_q8_K.qs[QK_K] | |
const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
// load 2bits*16*8 from block_q2_K.qs[QK_K/4] | |
__m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; | |
const __m128i q2_0 = _mm_and_si128(q2bits, m3); | |
const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); | |
const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); | |
const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); | |
q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; | |
const __m128i q2_1 = _mm_and_si128(q2bits, m3); | |
const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); | |
const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); | |
const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); | |
// isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8 | |
__m128i p0 = _mm_maddubs_epi16(q2_0, q8_0); | |
__m128i p1 = _mm_maddubs_epi16(q2_1, q8_1); | |
__m128i p2 = _mm_maddubs_epi16(q2_2, q8_2); | |
__m128i p3 = _mm_maddubs_epi16(q2_3, q8_3); | |
__m128i p4 = _mm_maddubs_epi16(q2_4, q8_4); | |
__m128i p5 = _mm_maddubs_epi16(q2_5, q8_5); | |
__m128i p6 = _mm_maddubs_epi16(q2_6, q8_6); | |
__m128i p7 = _mm_maddubs_epi16(q2_7, q8_7); | |
// isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8 | |
__m128i shuffle = _mm_set1_epi16(0x0100); | |
p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7); | |
p0 = _mm_add_epi32(p0, p1); | |
p2 = _mm_add_epi32(p2, p3); | |
p4 = _mm_add_epi32(p4, p5); | |
p6 = _mm_add_epi32(p6, p7); | |
// isum in 32bits*4*2 | |
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2)); | |
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6)); | |
} | |
// sumf += dall * isum - dmin * summs in 32bits | |
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); | |
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc); | |
} | |
*s = hsum_float_8(acc); | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * q2 = x[i].qs; | |
const int8_t * q8 = y[i].qs; | |
const uint8_t * sc = x[i].scales; | |
int summs = 0; | |
for (int j = 0; j < 16; ++j) { | |
summs += y[i].bsums[j] * (sc[j] >> 4); | |
} | |
const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
int isum = 0; | |
int is = 0; | |
int d; | |
for (int k = 0; k < QK_K/128; ++k) { | |
int shift = 0; | |
for (int j = 0; j < 4; ++j) { | |
d = sc[is++] & 0xF; | |
int isuml = 0; | |
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3); | |
isum += d * isuml; | |
d = sc[is++] & 0xF; | |
isuml = 0; | |
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3); | |
isum += d * isuml; | |
shift += 2; | |
q8 += 32; | |
} | |
q2 += 32; | |
} | |
sumf += dall * isum - dmin * summs; | |
} | |
*s = sumf; | |
} | |
void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
const block_q2_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
const uint8x16_t m3 = vdupq_n_u8(0x3); | |
const int32x4_t vzero = vdupq_n_s32(0); | |
int8x16x4_t q2bytes; | |
uint32_t aux32[2]; | |
const uint8_t * scales = (const uint8_t *)aux32; | |
float sum = 0; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * (float)x[i].d; | |
const float dmin = -y[i].d * (float)x[i].dmin; | |
const uint8_t * restrict q2 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const uint32_t * restrict sc = (const uint32_t *)x[i].scales; | |
aux32[0] = sc[0] & 0x0f0f0f0f; | |
aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; | |
sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]); | |
int isum1 = 0, isum2 = 0; | |
const uint8x16_t q2bits = vld1q_u8(q2); | |
const int8x16x4_t q8bytes = vld1q_s8_x4(q8); | |
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3)); | |
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3)); | |
q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3)); | |
q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3)); | |
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0]; | |
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1]; | |
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2]; | |
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3]; | |
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
isum1 += vaddvq_s16(p1) * scales[0]; | |
isum2 += vaddvq_s16(p2) * scales[1]; | |
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])), | |
vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2]))); | |
const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])), | |
vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3]))); | |
isum1 += vaddvq_s16(p3) * scales[2]; | |
isum2 += vaddvq_s16(p4) * scales[3]; | |
sum += d * (isum1 + isum2); | |
} | |
*s = sum; | |
const __m256i m3 = _mm256_set1_epi8(3); | |
__m256 acc = _mm256_setzero_ps(); | |
uint32_t ud, um; | |
const uint8_t * restrict db = (const uint8_t *)&ud; | |
const uint8_t * restrict mb = (const uint8_t *)&um; | |
float summs = 0; | |
// TODO: optimize this | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
const uint8_t * restrict q2 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const uint32_t * restrict sc = (const uint32_t *)x[i].scales; | |
ud = (sc[0] >> 0) & 0x0f0f0f0f; | |
um = (sc[0] >> 4) & 0x0f0f0f0f; | |
int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; | |
summs += dmin * smin; | |
const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); | |
const __m256i q2_0 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 2), q2bits), m3); | |
const __m256i q2_1 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3); | |
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); | |
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); | |
const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0); | |
const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1); | |
const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0)); | |
const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1)); | |
const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0)); | |
const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1)); | |
acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc); | |
acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc); | |
acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc); | |
acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc); | |
} | |
*s = hsum_float_8(acc) + summs; | |
float sumf = 0; | |
int isum[4]; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * q2 = x[i].qs; | |
const int8_t * q8 = y[i].qs; | |
const uint8_t * sc = x[i].scales; | |
int summs = 0; | |
for (int j = 0; j < QK_K/16; ++j) { | |
summs += y[i].bsums[j] * (sc[j] >> 4); | |
} | |
const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
isum[0] = isum[1] = isum[2] = isum[3] = 0; | |
for (int l = 0; l < 16; ++l) { | |
isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3); | |
isum[1] += q8[l+16] * ((q2[l] >> 2) & 3); | |
isum[2] += q8[l+32] * ((q2[l] >> 4) & 3); | |
isum[3] += q8[l+48] * ((q2[l] >> 6) & 3); | |
} | |
for (int l = 0; l < 4; ++l) { | |
isum[l] *= (sc[l] & 0xF); | |
} | |
sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs; | |
} | |
*s = sumf; | |
} | |
void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
assert(n % QK_K == 0); | |
const uint32_t kmask1 = 0x03030303; | |
const uint32_t kmask2 = 0x0f0f0f0f; | |
const block_q3_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
uint32_t aux[3]; | |
uint32_t utmp[4]; | |
const uint8x16_t m3b = vdupq_n_u8(0x3); | |
const int32x4_t vzero = vdupq_n_s32(0); | |
const uint8x16_t m0 = vdupq_n_u8(1); | |
const uint8x16_t m1 = vshlq_n_u8(m0, 1); | |
const uint8x16_t m2 = vshlq_n_u8(m0, 2); | |
const uint8x16_t m3 = vshlq_n_u8(m0, 3); | |
const int8_t m32 = 32; | |
int8x16x4_t q3bytes; | |
float sum = 0; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q3 = x[i].qs; | |
const uint8_t * restrict qh = x[i].hmask; | |
const int8_t * restrict q8 = y[i].qs; | |
uint8x16x2_t qhbits = vld1q_u8_x2(qh); | |
uint8x16x4_t q3h; | |
int32_t isum = 0; | |
// Set up scales | |
memcpy(aux, x[i].scales, 12); | |
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); | |
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); | |
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); | |
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); | |
int8_t * scale = (int8_t *)utmp; | |
for (int j = 0; j < 16; ++j) scale[j] -= m32; | |
for (int j = 0; j < QK_K/128; ++j) { | |
const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32; | |
const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64; | |
const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64; | |
q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2); | |
q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2); | |
q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1); | |
q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1); | |
q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0])); | |
q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1])); | |
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2])); | |
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3])); | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0]; | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1]; | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2]; | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3]; | |
int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])), | |
vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0]))); | |
int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])), | |
vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1]))); | |
int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])), | |
vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2]))); | |
int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])), | |
vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3]))); | |
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3]; | |
scale += 4; | |
q3h.val[0] = vbicq_u8(m2, qhbits.val[0]); | |
q3h.val[1] = vbicq_u8(m2, qhbits.val[1]); | |
q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1); | |
q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1); | |
q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0])); | |
q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1])); | |
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2])); | |
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3])); | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0]; | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1]; | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2]; | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3]; | |
p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])), | |
vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0]))); | |
p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])), | |
vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1]))); | |
p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])), | |
vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2]))); | |
p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])), | |
vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3]))); | |
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3]; | |
scale += 4; | |
if (j == 0) { | |
qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4); | |
qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4); | |
} | |
} | |
sum += d * isum; | |
} | |
*s = sum; | |
const __m256i m3 = _mm256_set1_epi8(3); | |
const __m256i mone = _mm256_set1_epi8(1); | |
const __m128i m32 = _mm_set1_epi8(32); | |
__m256 acc = _mm256_setzero_ps(); | |
uint32_t aux[3]; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q3 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
// Set up scales | |
memcpy(aux, x[i].scales, 12); | |
__m128i scales128 = _mm_set_epi32( | |
((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), | |
((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), | |
(aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), | |
(aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); | |
scales128 = _mm_sub_epi8(scales128, m32); | |
const __m256i all_scales = _mm256_cvtepi8_epi16(scales128); | |
const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); | |
const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); | |
const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)}; | |
// high bit | |
const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask); | |
// integer accumulator | |
__m256i sumi = _mm256_setzero_si256(); | |
int bit = 0; | |
int is = 0; | |
for (int j = 0; j < QK_K/128; ++j) { | |
// load low 2 bits | |
const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32; | |
// prepare low and high bits | |
const __m256i q3l_0 = _mm256_and_si256(q3bits, m3); | |
const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); | |
++bit; | |
const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3); | |
const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); | |
++bit; | |
const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3); | |
const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); | |
++bit; | |
const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3); | |
const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); | |
++bit; | |
// load Q8 quants | |
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
// Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, | |
// and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, | |
// and 2 if the high bit was set) | |
__m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0); | |
__m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1); | |
__m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2); | |
__m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3); | |
__m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0); | |
__m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1); | |
__m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2); | |
__m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3); | |
p16_0 = _mm256_sub_epi16(p16_0, q8s_0); | |
p16_1 = _mm256_sub_epi16(p16_1, q8s_1); | |
p16_2 = _mm256_sub_epi16(p16_2, q8s_2); | |
p16_3 = _mm256_sub_epi16(p16_3, q8s_3); | |
// multiply with scales | |
p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0); | |
p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1); | |
p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2); | |
p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3); | |
// accumulate | |
p16_0 = _mm256_add_epi32(p16_0, p16_1); | |
p16_2 = _mm256_add_epi32(p16_2, p16_3); | |
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2)); | |
} | |
// multiply with block scale and accumulate | |
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); | |
} | |
*s = hsum_float_8(acc); | |
const __m128i m3 = _mm_set1_epi8(3); | |
const __m128i mone = _mm_set1_epi8(1); | |
const __m128i m32 = _mm_set1_epi8(32); | |
const __m128i m2 = _mm_set1_epi8(2); | |
__m256 acc = _mm256_setzero_ps(); | |
uint32_t *aux; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q3 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
// Set up scales | |
aux = (uint32_t *)x[i].scales; | |
__m128i scales128 = _mm_set_epi32( | |
((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), | |
((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), | |
(aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), | |
(aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); | |
scales128 = _mm_sub_epi8(scales128, m32); | |
const __m128i scales_0 = _mm_cvtepi8_epi16(scales128); | |
const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128)); | |
const __m128i scales[2] = { scales_0, scales_1 }; | |
// high bit *128*2 from block_q3_K.hmask[QK_K/8] | |
const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]); | |
const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]); | |
// integer accumulator | |
__m128i sumi_0 = _mm_setzero_si128(); | |
__m128i sumi_1 = _mm_setzero_si128(); | |
for (int j = 0; j < QK_K/128; ++j) { | |
// load low 2 bits *64*2 from block_q3_K.qs[QK_K/4] | |
const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; | |
const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; | |
// prepare low and high bits | |
const int bit = j << 2; | |
const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3); | |
const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3); | |
const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2); | |
const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2); | |
const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3); | |
const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3); | |
const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2); | |
const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2); | |
const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3); | |
const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3); | |
const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2); | |
const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2); | |
const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3); | |
const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3); | |
const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2); | |
const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2); | |
// load Q8 quants from block_q8_K.qs[QK_K] | |
const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
// Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, | |
// and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, | |
// and 2 if the high bit was set) | |
__m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0); | |
__m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1); | |
__m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2); | |
__m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3); | |
__m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4); | |
__m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5); | |
__m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6); | |
__m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7); | |
__m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0); | |
__m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1); | |
__m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2); | |
__m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3); | |
__m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4); | |
__m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5); | |
__m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6); | |
__m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7); | |
p16_0 = _mm_sub_epi16(p16_0, q8s_0); | |
p16_1 = _mm_sub_epi16(p16_1, q8s_1); | |
p16_2 = _mm_sub_epi16(p16_2, q8s_2); | |
p16_3 = _mm_sub_epi16(p16_3, q8s_3); | |
p16_4 = _mm_sub_epi16(p16_4, q8s_4); | |
p16_5 = _mm_sub_epi16(p16_5, q8s_5); | |
p16_6 = _mm_sub_epi16(p16_6, q8s_6); | |
p16_7 = _mm_sub_epi16(p16_7, q8s_7); | |
// multiply with scales | |
__m128i shuffle = _mm_set1_epi16(0x0100); | |
p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7); | |
// accumulate | |
p16_0 = _mm_add_epi32(p16_0, p16_1); | |
p16_2 = _mm_add_epi32(p16_2, p16_3); | |
p16_4 = _mm_add_epi32(p16_4, p16_5); | |
p16_6 = _mm_add_epi32(p16_6, p16_7); | |
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); | |
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6)); | |
} | |
// multiply with block scale and accumulate | |
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); | |
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc); | |
} | |
*s = hsum_float_8(acc); | |
// scalar version | |
// This function is written like this so the compiler can manage to vectorize most of it | |
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the | |
// manually vectorized version above. Every other version I tried would run at least 4 times slower. | |
// The ideal situation would be if we could just write the code once, and the compiler would | |
// automatically produce the best possible set of machine instructions, instead of us having to manually | |
// write vectorized versions for AVX, ARM_NEON, etc. | |
int8_t aux8[QK_K]; | |
int16_t aux16[8]; | |
float sums [8]; | |
int32_t aux32[8]; | |
memset(sums, 0, 8*sizeof(float)); | |
uint32_t auxs[4]; | |
const int8_t * scales = (const int8_t*)auxs; | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q3 = x[i].qs; | |
const uint8_t * restrict hm = x[i].hmask; | |
const int8_t * restrict q8 = y[i].qs; | |
memset(aux32, 0, 8*sizeof(int32_t)); | |
int8_t * restrict a = aux8; | |
uint8_t m = 1; | |
for (int j = 0; j < QK_K; j += 128) { | |
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3; | |
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); | |
a += 32; m <<= 1; | |
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3; | |
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); | |
a += 32; m <<= 1; | |
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3; | |
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); | |
a += 32; m <<= 1; | |
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3; | |
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); | |
a += 32; m <<= 1; | |
q3 += 32; | |
} | |
a = aux8; | |
memcpy(auxs, x[i].scales, 12); | |
uint32_t tmp = auxs[2]; | |
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4); | |
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4); | |
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4); | |
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4); | |
for (int j = 0; j < QK_K/16; ++j) { | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l]; | |
q8 += 8; a += 8; | |
} | |
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; | |
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; | |
} | |
for (int l = 0; l < 8; ++l) sumf += sums[l]; | |
*s = sumf; | |
} | |
void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
assert(n % QK_K == 0); | |
const block_q3_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
const int32x4_t vzero = vdupq_n_s32(0); | |
const uint8x16_t m3b = vdupq_n_u8(0x3); | |
const uint8x16_t mh = vdupq_n_u8(4); | |
int8x16x4_t q3bytes; | |
uint16_t aux16[2]; | |
int8_t * scales = (int8_t *)aux16; | |
float sum = 0; | |
for (int i = 0; i < nb; ++i) { | |
uint8x16x4_t q3h; | |
const uint8x8_t hbits = vld1_u8(x[i].hmask); | |
const uint8x16_t q3bits = vld1q_u8(x[i].qs); | |
const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs); | |
const uint16_t a = *(const uint16_t *)x[i].scales; | |
aux16[0] = a & 0x0f0f; | |
aux16[1] = (a >> 4) & 0x0f0f; | |
for (int j = 0; j < 4; ++j) scales[j] -= 8; | |
int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); | |
const float d = y[i].d * (float)x[i].d; | |
const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1)); | |
q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2)); | |
q3h.val[1] = vandq_u8(mh, htmp); | |
q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2)); | |
q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4)); | |
q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0])); | |
q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1])); | |
q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2])); | |
q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3])); | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0]; | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2]; | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1]; | |
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3]; | |
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])), | |
vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2]))); | |
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])), | |
vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3]))); | |
isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3]; | |
sum += d * isum; | |
} | |
*s = sum; | |
const __m256i m3 = _mm256_set1_epi8(3); | |
const __m256i m1 = _mm256_set1_epi8(1); | |
__m256 acc = _mm256_setzero_ps(); | |
uint64_t aux64; | |
uint16_t aux16[2]; | |
const int8_t * aux8 = (const int8_t *)aux16; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q3 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const uint16_t a = *(const uint16_t *)x[i].scales; | |
aux16[0] = a & 0x0f0f; | |
aux16[1] = (a >> 4) & 0x0f0f; | |
const __m256i scale_0 = _mm256_set_m128i(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8)); | |
const __m256i scale_1 = _mm256_set_m128i(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8)); | |
memcpy(&aux64, x[i].hmask, 8); | |
const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0); | |
__m256i q3h_0 = _mm256_set_m128i(_mm_srli_epi16(haux, 2), haux); | |
__m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4); | |
q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2); | |
q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2); | |
// load low 2 bits | |
const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3); | |
// prepare low and high bits | |
const __m256i q3aux = _mm256_set_m128i(_mm_srli_epi16(q3bits, 2), q3bits); | |
const __m256i q3l_0 = _mm256_and_si256(q3aux, m3); | |
const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3); | |
// load Q8 quants | |
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); | |
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); | |
// Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, | |
// and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, | |
// and 2 if the high bit was set) | |
const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0); | |
const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1); | |
__m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0); | |
__m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1); | |
p16_0 = _mm256_sub_epi16(p16_0, q8s_0); | |
p16_1 = _mm256_sub_epi16(p16_1, q8s_1); | |
// multiply with scales | |
p16_0 = _mm256_madd_epi16(scale_0, p16_0); | |
p16_1 = _mm256_madd_epi16(scale_1, p16_1); | |
p16_0 = _mm256_add_epi32(p16_0, p16_1); | |
// multiply with block scale and accumulate | |
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc); | |
} | |
*s = hsum_float_8(acc); | |
int8_t aux8[QK_K]; | |
int16_t aux16[8]; | |
float sums [8]; | |
int32_t aux32[8]; | |
int32_t scales[4]; | |
memset(sums, 0, 8*sizeof(float)); | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q3 = x[i].qs; | |
const uint8_t * restrict hm = x[i].hmask; | |
const int8_t * restrict q8 = y[i].qs; | |
int8_t * restrict a = aux8; | |
for (int l = 0; l < 8; ++l) { | |
a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4); | |
a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4); | |
a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4); | |
a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4); | |
a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4); | |
a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4); | |
a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4); | |
a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4); | |
} | |
scales[0] = (x[i].scales[0] & 0xF) - 8; | |
scales[1] = (x[i].scales[0] >> 4) - 8; | |
scales[2] = (x[i].scales[1] & 0xF) - 8; | |
scales[3] = (x[i].scales[1] >> 4) - 8; | |
memset(aux32, 0, 8*sizeof(int32_t)); | |
for (int j = 0; j < QK_K/16; ++j) { | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l]; | |
} | |
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; | |
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; | |
} | |
for (int l = 0; l < 8; ++l) sumf += sums[l]; | |
*s = sumf; | |
} | |
void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
assert(n % QK_K == 0); | |
const block_q4_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
static const uint32_t kmask1 = 0x3f3f3f3f; | |
static const uint32_t kmask2 = 0x0f0f0f0f; | |
static const uint32_t kmask3 = 0x03030303; | |
uint32_t utmp[4]; | |
const uint8x16_t m4b = vdupq_n_u8(0xf); | |
const int32x4_t mzero = vdupq_n_s32(0); | |
int8x16x2_t q4bytes; | |
int8x16x2_t q8bytes; | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8)); | |
memcpy(utmp, x[i].scales, 12); | |
const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)}; | |
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); | |
utmp[0] &= kmask1; | |
const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8))); | |
const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)), | |
vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins))); | |
sumf -= dmin * vaddvq_s32(prod); | |
const uint8_t * scales = (const uint8_t *)utmp; | |
const uint8_t * restrict q4 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
//int32x4_t isum = mzero; | |
int32_t sumi1 = 0; | |
int32_t sumi2 = 0; | |
for (int j = 0; j < QK_K/64; ++j) { | |
const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32; | |
q8bytes = vld1q_s8_x2(q8); q8 += 32; | |
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); | |
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); | |
const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); | |
sumi1 += vaddvq_s32(p1) * scales[2*j+0]; | |
q8bytes = vld1q_s8_x2(q8); q8 += 32; | |
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); | |
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); | |
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); | |
sumi2 += vaddvq_s32(p2) * scales[2*j+1]; | |
q8bytes = vld1q_s8_x2(q8); q8 += 32; | |
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); | |
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); | |
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0]; | |
q8bytes = vld1q_s8_x2(q8); q8 += 32; | |
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); | |
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); | |
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1]; | |
} | |
sumf += d * (sumi1 + sumi2); | |
} | |
*s = sumf; | |
const __m256i m4 = _mm256_set1_epi8(0xF); | |
__m256 acc = _mm256_setzero_ps(); | |
__m128 acc_m = _mm_setzero_ps(); | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
memcpy(utmp, x[i].scales, 12); | |
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); | |
const uint32_t uaux = utmp[1] & kmask1; | |
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); | |
utmp[2] = uaux; | |
utmp[0] &= kmask1; | |
const uint8_t * restrict q4 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); | |
const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums); | |
const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); | |
const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s); | |
acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m); | |
const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); | |
const __m256i scales = _mm256_set_m128i(sc128, sc128); | |
__m256i sumi = _mm256_setzero_si256(); | |
for (int j = 0; j < QK_K/64; ++j) { | |
const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0)); | |
const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1)); | |
const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; | |
const __m256i q4l = _mm256_and_si256(q4bits, m4); | |
const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); | |
const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
__m256i p16l = _mm256_maddubs_epi16(q4l, q8l); | |
p16l = _mm256_madd_epi16(scale_l, p16l); | |
sumi = _mm256_add_epi32(sumi, p16l); | |
const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
__m256i p16h = _mm256_maddubs_epi16(q4h, q8h); | |
p16h = _mm256_madd_epi16(scale_h, p16h); | |
sumi = _mm256_add_epi32(sumi, p16h); | |
} | |
__m256 vd = _mm256_set1_ps(d); | |
acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc); | |
} | |
acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); | |
acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); | |
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); | |
const __m128i m4 = _mm_set1_epi8(0xF); | |
const __m128i m2 = _mm_set1_epi8(0x2); | |
__m256 acc = _mm256_setzero_ps(); | |
__m128 acc_m = _mm_setzero_ps(); | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
const uint8_t * restrict q4 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
memcpy(utmp, x[i].scales, 12); | |
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); | |
const uint32_t uaux = utmp[1] & kmask1; | |
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); | |
utmp[2] = uaux; | |
utmp[0] &= kmask1; | |
const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); | |
const __m128i scales = _mm_cvtepu8_epi16(utmps); | |
const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); | |
const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); | |
const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); | |
const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); | |
const __m128i prod = _mm_madd_epi16(mins, q8s); | |
acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m); | |
__m128i sumi_0 = _mm_setzero_si128(); | |
__m128i sumi_1 = _mm_setzero_si128(); | |
__m128i shuffle = _mm_set1_epi16(0x0100); | |
for (int j = 0; j < QK_K/64; ++j) { | |
const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
__m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; | |
const __m128i q4l_0 = _mm_and_si128(q4bits, m4); | |
const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); | |
q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; | |
const __m128i q4l_1 = _mm_and_si128(q4bits, m4); | |
const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); | |
const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
__m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0); | |
p16l = _mm_madd_epi16(scale_l, p16l); | |
sumi_0 = _mm_add_epi32(sumi_0, p16l); | |
const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
p16l = _mm_maddubs_epi16(q4l_1, q8l_1); | |
p16l = _mm_madd_epi16(scale_l, p16l); | |
sumi_1 = _mm_add_epi32(sumi_1, p16l); | |
const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
__m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0); | |
p16h = _mm_madd_epi16(scale_h, p16h); | |
sumi_0 = _mm_add_epi32(sumi_0, p16h); | |
const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
p16h = _mm_maddubs_epi16(q4h_1, q8h_1); | |
p16h = _mm_madd_epi16(scale_h, p16h); | |
sumi_1 = _mm_add_epi32(sumi_1, p16h); | |
} | |
__m256 vd = _mm256_set1_ps(d); | |
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); | |
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); | |
} | |
acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); | |
acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); | |
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); | |
const uint8_t * scales = (const uint8_t*)&utmp[0]; | |
const uint8_t * mins = (const uint8_t*)&utmp[2]; | |
int8_t aux8[QK_K]; | |
int16_t aux16[8]; | |
float sums [8]; | |
int32_t aux32[8]; | |
memset(sums, 0, 8*sizeof(float)); | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q4 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
memset(aux32, 0, 8*sizeof(int32_t)); | |
int8_t * restrict a = aux8; | |
for (int j = 0; j < QK_K/64; ++j) { | |
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); | |
a += 32; | |
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4); | |
a += 32; q4 += 32; | |
} | |
memcpy(utmp, x[i].scales, 12); | |
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); | |
const uint32_t uaux = utmp[1] & kmask1; | |
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); | |
utmp[2] = uaux; | |
utmp[0] &= kmask1; | |
int sumi = 0; | |
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2]; | |
a = aux8; | |
int is = 0; | |
for (int j = 0; j < QK_K/32; ++j) { | |
int32_t scale = scales[is++]; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
} | |
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; | |
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; | |
const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d; | |
sumf -= dmin * sumi; | |
} | |
for (int l = 0; l < 8; ++l) sumf += sums[l]; | |
*s = sumf; | |
} | |
void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
assert(n % QK_K == 0); | |
const block_q4_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
const uint8x16_t m4b = vdupq_n_u8(0xf); | |
const int32x4_t mzero = vdupq_n_s32(0); | |
float sumf = 0; | |
int8x16x2_t q4bytes; | |
int8x16x4_t q8bytes; | |
float sum_mins = 0.f; | |
uint16_t aux16[2]; | |
const uint8_t * restrict scales = (const uint8_t *)aux16; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q4 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const uint16_t * restrict a = (const uint16_t *)x[i].scales; | |
aux16[0] = a[0] & 0x0f0f; | |
aux16[1] = (a[0] >> 4) & 0x0f0f; | |
const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]); | |
sum_mins += y[i].d * (float)x[i].d[1] * summi; | |
const float d = y[i].d * (float)x[i].d[0]; | |
const uint8x16x2_t q4bits = vld1q_u8_x2(q4); | |
q8bytes = vld1q_s8_x4(q8); | |
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); | |
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); | |
const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); | |
const int32_t sumi1 = vaddvq_s32(p1) * scales[0]; | |
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); | |
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); | |
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]); | |
const int32_t sumi2 = vaddvq_s32(p2) * scales[1]; | |
q8bytes = vld1q_s8_x4(q8); | |
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); | |
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); | |
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0]; | |
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); | |
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); | |
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])), | |
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2]))); | |
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])), | |
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3]))); | |
int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1]; | |
sumf += d * (sumi1 + sumi2); | |
} | |
*s = sumf - sum_mins; | |
const __m256i m4 = _mm256_set1_epi8(0xF); | |
__m256 acc = _mm256_setzero_ps(); | |
float summs = 0; | |
uint16_t aux16[2]; | |
const uint8_t * scales = (const uint8_t *)aux16; | |
for (int i = 0; i < nb; ++i) { | |
const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d; | |
const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d; | |
const __m256 vd = _mm256_set1_ps(d); | |
const uint16_t * a = (const uint16_t *)x[i].scales; | |
aux16[0] = a[0] & 0x0f0f; | |
aux16[1] = (a[0] >> 4) & 0x0f0f; | |
summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); | |
const uint8_t * restrict q4 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); | |
const __m256i q4l = _mm256_and_si256(q4bits, m4); | |
const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); | |
const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0)); | |
const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32)); | |
const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l); | |
const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h); | |
const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l); | |
acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc); | |
const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h); | |
acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc); | |
} | |
*s = hsum_float_8(acc) - summs; | |
uint8_t aux8[QK_K]; | |
int16_t aux16[16]; | |
float sums [8]; | |
memset(sums, 0, 8*sizeof(float)); | |
uint16_t s16[2]; | |
const uint8_t * restrict scales = (const uint8_t *)s16; | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q4 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
uint8_t * restrict a = aux8; | |
for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF; | |
for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4; | |
const uint16_t * restrict b = (const uint16_t *)x[i].scales; | |
s16[0] = b[0] & 0x0f0f; | |
s16[1] = (b[0] >> 4) & 0x0f0f; | |
sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]); | |
for (int j = 0; j < QK_K/32; ++j) { | |
for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; | |
q8 += 16; a += 16; | |
for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l]; | |
q8 += 16; a += 16; | |
const float dl = d * scales[j]; | |
for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]); | |
} | |
} | |
for (int l = 0; l < 8; ++l) sumf += sums[l]; | |
*s = sumf; | |
} | |
void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
assert(n % QK_K == 0); | |
const block_q5_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
static const uint32_t kmask1 = 0x3f3f3f3f; | |
static const uint32_t kmask2 = 0x0f0f0f0f; | |
static const uint32_t kmask3 = 0x03030303; | |
uint32_t utmp[4]; | |
const uint8x16_t m4b = vdupq_n_u8(0xf); | |
const int32x4_t mzero = vdupq_n_s32(0); | |
const uint8x16_t mone = vdupq_n_u8(1); | |
const uint8x16_t mtwo = vdupq_n_u8(2); | |
int8x16x4_t q5bytes; | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8)); | |
memcpy(utmp, x[i].scales, 12); | |
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); | |
const uint32_t uaux = utmp[1] & kmask1; | |
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); | |
utmp[2] = uaux; | |
utmp[0] &= kmask1; | |
const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8); | |
const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8)); | |
const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)), | |
vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins))); | |
int32_t sumi_mins = vaddvq_s32(prod); | |
const uint8_t * scales = (const uint8_t *)utmp; | |
const uint8_t * restrict q5 = x[i].qs; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
uint8x16x2_t qhbits = vld1q_u8_x2(qh); | |
uint8x16x4_t q5h; | |
int32_t sumi = 0; | |
for (int j = 0; j < QK_K/64; ++j) { | |
const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32; | |
const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64; | |
q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); | |
q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); | |
q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3); | |
q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3); | |
qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2); | |
qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2); | |
q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0])); | |
q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1])); | |
q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2])); | |
q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3])); | |
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++; | |
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++; | |
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++; | |
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])), | |
vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2]))); | |
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])), | |
vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3]))); | |
sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++; | |
} | |
sumf += d * sumi - dmin * sumi_mins; | |
} | |
*s = sumf; | |
const __m256i m4 = _mm256_set1_epi8(0xF); | |
const __m128i mzero = _mm_setzero_si128(); | |
const __m256i mone = _mm256_set1_epi8(1); | |
__m256 acc = _mm256_setzero_ps(); | |
float summs = 0.f; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q5 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
memcpy(utmp, x[i].scales, 12); | |
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); | |
const uint32_t uaux = utmp[1] & kmask1; | |
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); | |
utmp[2] = uaux; | |
utmp[0] &= kmask1; | |
// TODO | |
const float d = 0, dmin = 0; | |
const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); | |
const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums); | |
const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); | |
const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s); | |
const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero); | |
summs += dmin * _mm_extract_epi32(hsum, 0); | |
const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); | |
const __m256i scales = _mm256_set_m128i(sc128, sc128); | |
const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh); | |
__m256i hmask = mone; | |
__m256i sumi = _mm256_setzero_si256(); | |
int bit = 0; | |
for (int j = 0; j < QK_K/64; ++j) { | |
const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0)); | |
const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1)); | |
const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32; | |
const __m256i q5l_0 = _mm256_and_si256(q5bits, m4); | |
const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4); | |
const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0); | |
hmask = _mm256_slli_epi16(hmask, 1); | |
const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4); | |
const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4); | |
const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1); | |
hmask = _mm256_slli_epi16(hmask, 1); | |
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
__m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0); | |
__m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1); | |
p16_0 = _mm256_madd_epi16(scale_0, p16_0); | |
p16_1 = _mm256_madd_epi16(scale_1, p16_1); | |
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); | |
} | |
__m256 vd = _mm256_set1_ps(d); | |
acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc); | |
} | |
*s = hsum_float_8(acc) + summs; | |
const __m128i m4 = _mm_set1_epi8(0xF); | |
const __m128i mzero = _mm_setzero_si128(); | |
const __m128i mone = _mm_set1_epi8(1); | |
const __m128i m2 = _mm_set1_epi8(2); | |
__m256 acc = _mm256_setzero_ps(); | |
float summs = 0.f; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); | |
const uint8_t * restrict q5 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
memcpy(utmp, x[i].scales, 12); | |
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); | |
const uint32_t uaux = utmp[1] & kmask1; | |
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); | |
utmp[2] = uaux; | |
utmp[0] &= kmask1; | |
const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); | |
const __m128i scales = _mm_cvtepu8_epi16(utmps); | |
const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); | |
const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); | |
const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); | |
const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); | |
const __m128i prod = _mm_madd_epi16(mins, q8s); | |
const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero); | |
summs += dmin * _mm_extract_epi32(hsum, 0); | |
const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]); | |
const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]); | |
__m128i hmask = mone; | |
__m128i sumi_0 = _mm_setzero_si128(); | |
__m128i sumi_1 = _mm_setzero_si128(); | |
int bit = 0; | |
__m128i shuffle = _mm_set1_epi16(0x0100); | |
for (int j = 0; j < QK_K/64; ++j) { | |
const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle); | |
shuffle = _mm_add_epi16(shuffle, m2); | |
const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; | |
const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; | |
__m128i q5l_0 = _mm_and_si128(q5bits_0, m4); | |
__m128i q5l_1 = _mm_and_si128(q5bits_1, m4); | |
__m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); | |
__m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); | |
__m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0); | |
__m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1); | |
hmask = _mm_slli_epi16(hmask, 1); | |
__m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
__m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
__m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0); | |
__m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1); | |
p16_0 = _mm_madd_epi16(scale_0, p16_0); | |
p16_1 = _mm_madd_epi16(scale_0, p16_1); | |
q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4); | |
q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4); | |
q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); | |
q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); | |
q5_0 = _mm_add_epi8(q5l_0, q5h_0); | |
q5_1 = _mm_add_epi8(q5l_1, q5h_1); | |
hmask = _mm_slli_epi16(hmask, 1); | |
q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
__m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0); | |
__m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1); | |
p16_2 = _mm_madd_epi16(scale_1, p16_2); | |
p16_3 = _mm_madd_epi16(scale_1, p16_3); | |
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); | |
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); | |
} | |
__m256 vd = _mm256_set1_ps(d); | |
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); | |
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); | |
} | |
*s = hsum_float_8(acc) + summs; | |
const uint8_t * scales = (const uint8_t*)&utmp[0]; | |
const uint8_t * mins = (const uint8_t*)&utmp[2]; | |
int8_t aux8[QK_K]; | |
int16_t aux16[8]; | |
float sums [8]; | |
int32_t aux32[8]; | |
memset(sums, 0, 8*sizeof(float)); | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q4 = x[i].qs; | |
const uint8_t * restrict hm = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
memset(aux32, 0, 8*sizeof(int32_t)); | |
int8_t * restrict a = aux8; | |
uint8_t m = 1; | |
for (int j = 0; j < QK_K/64; ++j) { | |
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); | |
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0); | |
a += 32; m <<= 1; | |
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4); | |
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0); | |
a += 32; m <<= 1; | |
q4 += 32; | |
} | |
memcpy(utmp, x[i].scales, 12); | |
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); | |
const uint32_t uaux = utmp[1] & kmask1; | |
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); | |
utmp[2] = uaux; | |
utmp[0] &= kmask1; | |
int sumi = 0; | |
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2]; | |
a = aux8; | |
int is = 0; | |
for (int j = 0; j < QK_K/32; ++j) { | |
int32_t scale = scales[is++]; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
} | |
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; | |
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; | |
const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d; | |
sumf -= dmin * sumi; | |
} | |
for (int l = 0; l < 8; ++l) sumf += sums[l]; | |
*s = sumf; | |
} | |
void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
assert(n % QK_K == 0); | |
const block_q5_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
const uint8x16_t m4b = vdupq_n_u8(0xf); | |
const int32x4_t mzero = vdupq_n_s32(0); | |
const uint8x16_t mh = vdupq_n_u8(16); | |
int8x16x4_t q5bytes; | |
uint8x16x4_t q5h; | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * (float)x[i].d; | |
const int8_t * sc = x[i].scales; | |
const uint8_t * restrict q5 = x[i].qs; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
const uint8x8_t qhbits = vld1_u8(qh); | |
const uint8x16x2_t q5bits = vld1q_u8_x2(q5); | |
const int8x16x4_t q8bytes = vld1q_s8_x4(q8); | |
const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1)); | |
q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4)); | |
q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2)); | |
q5h.val[2] = vbicq_u8(mh, htmp); | |
q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2)); | |
q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0])); | |
q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1])); | |
q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2])); | |
q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3])); | |
int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0])); | |
int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1])); | |
int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2])); | |
int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3])); | |
sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); | |
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1); | |
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])), | |
vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2]))); | |
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])), | |
vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3]))); | |
sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3); | |
sumf += d*sumi; | |
} | |
*s = sumf; | |
const __m256i m4 = _mm256_set1_epi8(0xF); | |
const __m256i mone = _mm256_set1_epi8(1); | |
__m256 acc = _mm256_setzero_ps(); | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q5 = x[i].qs; | |
const int8_t * restrict q8 = y[i].qs; | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); | |
const __m256i scale_l = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0])); | |
const __m256i scale_h = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2])); | |
int64_t aux64; | |
memcpy(&aux64, x[i].qh, 8); | |
const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64); | |
const __m256i haux256 = _mm256_set_m128i(_mm_srli_epi16(haux128, 2), haux128); | |
const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4); | |
const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4); | |
const __m256i q5l_0 = _mm256_and_si256(q5bits, m4); | |
const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4); | |
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); | |
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); | |
const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0)); | |
const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1)); | |
const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0)); | |
const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1)); | |
const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1)); | |
acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc); | |
} | |
*s = hsum_float_8(acc); | |
uint8_t aux8[QK_K]; | |
int16_t aux16[16]; | |
float sums [8]; | |
memset(sums, 0, 8*sizeof(float)); | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q4 = x[i].qs; | |
const uint8_t * restrict hm = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
uint8_t * restrict a = aux8; | |
for (int l = 0; l < 32; ++l) { | |
a[l+ 0] = q4[l] & 0xF; | |
a[l+32] = q4[l] >> 4; | |
} | |
for (int is = 0; is < 8; ++is) { | |
uint8_t m = 1 << is; | |
for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16); | |
} | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const int8_t * restrict sc = x[i].scales; | |
for (int j = 0; j < QK_K/16; ++j) { | |
const float dl = d * sc[j]; | |
for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]); | |
q8 += 16; a += 16; | |
} | |
} | |
for (int l = 0; l < 8; ++l) sumf += sums[l]; | |
*s = sumf; | |
} | |
void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
assert(n % QK_K == 0); | |
const block_q6_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
float sum = 0; | |
const uint8x16_t m4b = vdupq_n_u8(0xF); | |
const int32x4_t vzero = vdupq_n_s32(0); | |
//const int8x16_t m32s = vdupq_n_s8(32); | |
const uint8x16_t mone = vdupq_n_u8(3); | |
int8x16x4_t q6bytes; | |
uint8x16x4_t q6h; | |
for (int i = 0; i < nb; ++i) { | |
const float d_all = ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q6 = x[i].ql; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
const int8_t * restrict scale = x[i].scales; | |
const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums); | |
const int8x16_t scales = vld1q_s8(scale); | |
const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}; | |
const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])), | |
vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))), | |
vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])), | |
vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1])))); | |
int32_t isum_mins = vaddvq_s32(prod); | |
int32_t isum = 0; | |
for (int j = 0; j < QK_K/128; ++j) { | |
uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32; | |
uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64; | |
int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64; | |
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); | |
q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); | |
uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2); | |
q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); | |
shifted = vshrq_n_u8(qhbits.val[1], 2); | |
q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); | |
//q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s); | |
//q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s); | |
//q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s); | |
//q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s); | |
q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])); | |
q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])); | |
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])); | |
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])); | |
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + | |
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + | |
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + | |
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; | |
scale += 4; | |
int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1]; | |
scale += 2; | |
int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])), | |
vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2]))); | |
int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])), | |
vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3]))); | |
isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1]; | |
scale += 2; | |
q8bytes = vld1q_s8_x4(q8); q8 += 64; | |
shifted = vshrq_n_u8(qhbits.val[0], 4); | |
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4); | |
shifted = vshrq_n_u8(qhbits.val[1], 4); | |
q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4); | |
shifted = vshrq_n_u8(qhbits.val[0], 6); | |
q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); | |
shifted = vshrq_n_u8(qhbits.val[1], 6); | |
q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); | |
//q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s); | |
//q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s); | |
//q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s); | |
//q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s); | |
q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])); | |
q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])); | |
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])); | |
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])); | |
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + | |
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + | |
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + | |
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; | |
scale += 4; | |
//for (int l = 0; l < 4; ++l) { | |
// const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]); | |
// isum += vaddvq_s32(p) * *scale++; | |
//} | |
p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1]; | |
scale += 2; | |
p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])), | |
vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2]))); | |
p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])), | |
vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3]))); | |
isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1]; | |
scale += 2; | |
} | |
//sum += isum * d_all * y[i].d; | |
sum += d_all * y[i].d * (isum - 32 * isum_mins); | |
} | |
*s = sum; | |
const __m256i m4 = _mm256_set1_epi8(0xF); | |
const __m256i m2 = _mm256_set1_epi8(3); | |
const __m256i m32s = _mm256_set1_epi8(32); | |
__m256 acc = _mm256_setzero_ps(); | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q4 = x[i].ql; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); | |
__m256i sumi = _mm256_setzero_si256(); | |
int is = 0; | |
for (int j = 0; j < QK_K/128; ++j) { | |
const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0)); | |
const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1)); | |
const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2)); | |
const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3)); | |
is += 4; | |
const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; | |
const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; | |
const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32; | |
const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4); | |
const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4); | |
const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4); | |
const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4); | |
const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0); | |
const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1); | |
const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2); | |
const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3); | |
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; | |
__m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0); | |
__m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1); | |
__m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2); | |
__m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3); | |
__m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0); | |
__m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1); | |
__m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2); | |
__m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3); | |
p16_0 = _mm256_sub_epi16(p16_0, q8s_0); | |
p16_1 = _mm256_sub_epi16(p16_1, q8s_1); | |
p16_2 = _mm256_sub_epi16(p16_2, q8s_2); | |
p16_3 = _mm256_sub_epi16(p16_3, q8s_3); | |
p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0); | |
p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1); | |
p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2); | |
p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3); | |
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); | |
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3)); | |
} | |
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); | |
} | |
*s = hsum_float_8(acc); | |
const __m128i m4 = _mm_set1_epi8(0xF); | |
const __m128i m3 = _mm_set1_epi8(3); | |
const __m128i m32s = _mm_set1_epi8(32); | |
const __m128i m2 = _mm_set1_epi8(2); | |
__m256 acc = _mm256_setzero_ps(); | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q4 = x[i].ql; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); | |
__m128i sumi_0 = _mm_setzero_si128(); | |
__m128i sumi_1 = _mm_setzero_si128(); | |
__m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000); | |
for (int j = 0; j < QK_K/128; ++j) { | |
const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16; | |
const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16; | |
const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4); | |
const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4); | |
const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4); | |
const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4); | |
const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4); | |
const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4); | |
const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4); | |
const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4); | |
const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; | |
const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; | |
const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; | |
const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; | |
const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0); | |
const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1); | |
const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2); | |
const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3); | |
const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4); | |
const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5); | |
const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6); | |
const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7); | |
const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; | |
__m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0); | |
__m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1); | |
__m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2); | |
__m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3); | |
__m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4); | |
__m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5); | |
__m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6); | |
__m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7); | |
__m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0); | |
__m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1); | |
__m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2); | |
__m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3); | |
__m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4); | |
__m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5); | |
__m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6); | |
__m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7); | |
p16_0 = _mm_sub_epi16(p16_0, q8s_0); | |
p16_1 = _mm_sub_epi16(p16_1, q8s_1); | |
p16_2 = _mm_sub_epi16(p16_2, q8s_2); | |
p16_3 = _mm_sub_epi16(p16_3, q8s_3); | |
p16_4 = _mm_sub_epi16(p16_4, q8s_4); | |
p16_5 = _mm_sub_epi16(p16_5, q8s_5); | |
p16_6 = _mm_sub_epi16(p16_6, q8s_6); | |
p16_7 = _mm_sub_epi16(p16_7, q8s_7); | |
const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle); | |
shuffle = _mm_add_epi8(shuffle, m2); | |
const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle); | |
shuffle = _mm_add_epi8(shuffle, m2); | |
const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle); | |
shuffle = _mm_add_epi8(shuffle, m2); | |
const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle); | |
shuffle = _mm_add_epi8(shuffle, m2); | |
p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0); | |
p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1); | |
p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2); | |
p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3); | |
p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4); | |
p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5); | |
p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6); | |
p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7); | |
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); | |
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); | |
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6)); | |
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7)); | |
} | |
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0); | |
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc); | |
} | |
*s = hsum_float_8(acc); | |
int8_t aux8[QK_K]; | |
int16_t aux16[8]; | |
float sums [8]; | |
int32_t aux32[8]; | |
memset(sums, 0, 8*sizeof(float)); | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q4 = x[i].ql; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
memset(aux32, 0, 8*sizeof(int32_t)); | |
int8_t * restrict a = aux8; | |
for (int j = 0; j < QK_K; j += 128) { | |
for (int l = 0; l < 32; ++l) { | |
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; | |
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; | |
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; | |
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; | |
} | |
a += 128; | |
q4 += 64; | |
qh += 32; | |
} | |
a = aux8; | |
int is = 0; | |
for (int j = 0; j < QK_K/16; ++j) { | |
int scale = x[i].scales[is++]; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
} | |
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; | |
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; | |
} | |
for (int l = 0; l < 8; ++l) sumf += sums[l]; | |
*s = sumf; | |
} | |
void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { | |
assert(n % QK_K == 0); | |
const block_q6_K * restrict x = vx; | |
const block_q8_K * restrict y = vy; | |
const int nb = n / QK_K; | |
float sum = 0; | |
const uint8x16_t m4b = vdupq_n_u8(0xF); | |
const int32x4_t vzero = vdupq_n_s32(0); | |
const int8x16_t m32s = vdupq_n_s8(32); | |
const uint8x16_t mone = vdupq_n_u8(3); | |
int8x16x4_t q6bytes; | |
uint8x16x4_t q6h; | |
for (int i = 0; i < nb; ++i) { | |
const float d_all = (float)x[i].d; | |
const uint8_t * restrict q6 = x[i].ql; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
const int8_t * restrict scale = x[i].scales; | |
int32_t isum = 0; | |
uint8x16_t qhbits = vld1q_u8(qh); | |
uint8x16x2_t q6bits = vld1q_u8_x2(q6); | |
int8x16x4_t q8bytes = vld1q_s8_x4(q8); | |
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4); | |
uint8x16_t shifted = vshrq_n_u8(qhbits, 2); | |
q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4); | |
shifted = vshrq_n_u8(qhbits, 4); | |
q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); | |
shifted = vshrq_n_u8(qhbits, 6); | |
q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); | |
q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s); | |
q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s); | |
q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s); | |
q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s); | |
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + | |
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + | |
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + | |
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; | |
int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])), | |
vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0]))); | |
int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])), | |
vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1]))); | |
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1]; | |
int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])), | |
vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2]))); | |
int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])), | |
vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3]))); | |
isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3]; | |
sum += isum * d_all * y[i].d; | |
} | |
*s = sum; | |
const __m256i m4 = _mm256_set1_epi8(0xF); | |
const __m256i m2 = _mm256_set1_epi8(3); | |
const __m256i m32s = _mm256_set1_epi8(32); | |
__m256 acc = _mm256_setzero_ps(); | |
for (int i = 0; i < nb; ++i) { | |
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); | |
const uint8_t * restrict q4 = x[i].ql; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); | |
const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); | |
const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]); | |
const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]); | |
__m256i sumi = _mm256_setzero_si256(); | |
const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1); | |
const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3); | |
const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); | |
const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh); | |
const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4); | |
const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4); | |
const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0); | |
const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1); | |
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); | |
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); | |
__m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0); | |
__m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1); | |
__m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0); | |
__m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1); | |
p16_0 = _mm256_sub_epi16(p16_0, q8s_0); | |
p16_1 = _mm256_sub_epi16(p16_1, q8s_1); | |
p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0); | |
p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1); | |
sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); | |
acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); | |
} | |
*s = hsum_float_8(acc); | |
int8_t aux8[QK_K]; | |
int16_t aux16[8]; | |
float sums [8]; | |
int32_t aux32[8]; | |
memset(sums, 0, 8*sizeof(float)); | |
float sumf = 0; | |
for (int i = 0; i < nb; ++i) { | |
const uint8_t * restrict q4 = x[i].ql; | |
const uint8_t * restrict qh = x[i].qh; | |
const int8_t * restrict q8 = y[i].qs; | |
memset(aux32, 0, 8*sizeof(int32_t)); | |
int8_t * restrict a = aux8; | |
for (int l = 0; l < 16; ++l) { | |
a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; | |
a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; | |
a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; | |
a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; | |
} | |
int is = 0; | |
for (int j = 0; j < QK_K/16; ++j) { | |
int scale = x[i].scales[is++]; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; | |
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; | |
q8 += 8; a += 8; | |
} | |
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; | |
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; | |
} | |
for (int l = 0; l < 8; ++l) sumf += sums[l]; | |
*s = sumf; | |
} | |