Koboldcpp / otherarch /mpt_v3.cpp
Illumotion's picture
Upload folder using huggingface_hub
81bf9b4
raw
history blame
22.7 kB
#include "ggml.h"
#include "otherarch.h"
#include "utils.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#include <algorithm>
#include "model_adapter.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#if defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#endif
// load the model's weights from a file
bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab, int gpulayers) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.d_model, sizeof(hparams.d_model));
fin.read((char *) &hparams.max_seq_len, sizeof(hparams.max_seq_len));
fin.read((char *) &hparams.n_heads, sizeof(hparams.n_heads));
fin.read((char *) &hparams.n_layers, sizeof(hparams.n_layers));
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.alibi_bias_max, sizeof(hparams.alibi_bias_max));
fin.read((char *) &hparams.clip_qkv, sizeof(hparams.clip_qkv));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx);
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
printf("%s: d_model = %d\n", __func__, hparams.d_model);
printf("%s: max_seq_len = %d\n", __func__, hparams.max_seq_len);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_heads = %d\n", __func__, hparams.n_heads);
printf("%s: n_layers = %d\n", __func__, hparams.n_layers);
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max);
printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
printf("%s: qntvr = %d\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
const int32_t n_vocab = model.hparams.n_vocab;
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
// Convert token from utf-8
// std::wstring word_multibytes = convert_to_wstring(word);
// if(word_multibytes!=L"")
// {
// word.resize(word_multibytes.size());
// for (int w = 0; w < word_multibytes.size(); w++) {
// word[w] = uint8_t(word_multibytes[w]);
// }
// }
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit
// floats or quantized in order to save memory and also to speed up the
// computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(),
model.hparams.ftype);
return false;
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
const auto & hparams = model.hparams;
const size_t n_ctx = hparams.n_ctx;
{
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const size_t n_vocab = hparams.n_vocab;
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // norm_f_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight
ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight
ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight
ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v
ctx_size += (6 + 6 * n_layer) * 512; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
}
// create the ggml context
{
struct ggml_init_params params;
params.mem_size = ctx_size;
params.mem_buffer = NULL;
params.no_alloc = false;
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const size_t n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["transformer.wte.weight"] = model.wte_weight;
model.tensors["transformer.norm_f.weight"] = model.norm_f_weight;
for (int i = 0; i < (int) n_layer; ++i) {
auto & layer = model.layers[i];
layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);
layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);
layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);
// map by name
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_out_proj_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const int64_t n_mem = n_layer * n_ctx;
const int64_t n_elements = n_embd * n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = {1, 1};
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr,
"%s: tensor '%s' has wrong shape in model file: got [%5d, "
"%5d], expected [%5d, %5d]\n",
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1],
ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr,
"%s: tensor '%s' has wrong size in model file: got %zu, "
"expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
}
fin.close();
//gpu offload
#if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS)
if(gpulayers>0)
{
const auto & hparams = model.hparams;
size_t vram_total = 0;
const int n_gpu = std::min(gpulayers, int(hparams.n_layers));
fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu);
for (int i = 0; i < n_gpu; ++i) {
const auto & layer = model.layers[i];
layer.ffn_up_proj->backend = GGML_BACKEND_GPU;
layer.ffn_down_proj->backend = GGML_BACKEND_GPU;
layer.c_attn_wqkv_weight->backend = GGML_BACKEND_GPU;
layer.c_attn_out_proj_weight->backend = GGML_BACKEND_GPU;
#if defined(GGML_USE_CLBLAST)
ggml_cl_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_nbytes(layer.ffn_up_proj);
ggml_cl_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_nbytes(layer.ffn_down_proj);
ggml_cl_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_nbytes(layer.c_attn_wqkv_weight);
ggml_cl_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_nbytes(layer.c_attn_out_proj_weight);
#else
ggml_cuda_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_nbytes(layer.ffn_up_proj);
ggml_cuda_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_nbytes(layer.ffn_down_proj);
ggml_cuda_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_nbytes(layer.c_attn_wqkv_weight);
ggml_cuda_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_nbytes(layer.c_attn_out_proj_weight);
#endif
}
fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
}
#endif
return true;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past,
const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w,
bool logits_all, size_t & mem_per_token, bool use_scratch) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.d_model;
const int n_layer = hparams.n_layers;
const int n_head = hparams.n_heads;
const int n_vocab = hparams.n_vocab;
const int n_ctx = hparams.n_ctx;
static size_t buf_size = 256u * 1024 * 1024;
static void * buf = malloc(buf_size);
// use 2 scratch buffers
// TODO: very hacky solution - reimplement in a more elegant way
//MPT 30B needs more scratch memory
static size_t scr0_size = (n_embd>=7168?2048u:1024u)*1024*1024;
static size_t scr1_size = (n_embd>=7168?2048u:1024u)*1024*1024;
static void * scr0 = malloc(scr0_size);
static void * scr1 = malloc(scr1_size);
if (mem_per_token > 0 && (mem_per_token*N*2 + 64u*1024*1024) > buf_size) {
const size_t buf_size_new = 320u*1024*1024 + 1.2*(mem_per_token*N); // add 10% to account for ggml object overhead
// printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
// buf_size, buf_size_new);
// reallocate
if (buf_size_new > buf_size)
{
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes. Try reducing batch size.\n", __func__, buf_size);
return false;
}
}
}
struct ggml_init_params params;
params.mem_size = buf_size;
params.mem_buffer = buf;
params.no_alloc = false;
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
if(use_scratch){
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
}
// a = self.ln_1(x)
{
cur = ggml_norm(ctx0, inpL);
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur);
}
// self-attention
// b, _, past_key_value = self.attn(a, past_key_value=past_key_value,
// attn_bias=attn_bias, attention_mask=attention_mask,
// is_causal=is_causal)
{
// compute QKV
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur);
if (model.hparams.clip_qkv > 0.0f) {
cur = ggml_clamp(ctx0, cur, -model.hparams.clip_qkv, model.hparams.clip_qkv);
}
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);
// store key and value to memory
{
struct ggml_tensor * k =
ggml_view_1d(ctx0, model.memory_k, N * n_embd,
(ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past));
struct ggml_tensor * v =
ggml_view_1d(ctx0, model.memory_v, N * n_embd,
(ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0,
// 2, 1, 3) [64, N, 12]
struct ggml_tensor * Q = ggml_permute(
ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2,
1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1,
// 3) [64, n_past + N, 12]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd,
il * n_ctx * ggml_element_size(model.memory_k) * n_embd),
n_embd / n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
struct ggml_tensor * KQ_scaled_alibi =
ggml_alibi(ctx0, KQ_scaled, n_past, n_head, model.hparams.alibi_bias_max);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1,
// 2, 0, 3).contiguous() [n_past + N, 64, 12]
struct ggml_tensor * V_trans = ggml_cpy(
ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd,
il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
n_embd / n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection
{ cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); }
}
inpL = ggml_add(ctx0, inpL, cur);
if(use_scratch){
ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
}
// m = self.ln_2(x)
{
cur = ggml_norm(ctx0, inpL);
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur);
}
// n = self.mlp(m)
{
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur);
}
// x = x + n
inpL = ggml_add(ctx0, inpL, cur);
}
if(use_scratch){
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
}
// norm
{
inpL = ggml_norm(ctx0, inpL);
// inpL = ln_f_g*inpL
inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL);
}
if(use_scratch){
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
}
// output embedding weight tied to input embedding
inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL);
// logits -> probs
// inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute(ctx0, &gf);
// std::cout << "Qcur" << std::endl;
// print_tensor(Qcur);
// if (n_past%100 == 0) {
// ggml_graph_print(&gf);
// ggml_graph_dump_dot(&gf, NULL, "mpt-model.dot");
// }
if (logits_all) {
// return result for all tokens
embd_w.resize(n_vocab *N);
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) , sizeof(float) * n_vocab * N);
} else {
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab);
}
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0) / N;
}
// printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}