Koboldcpp / otherarch /neox_v3.cpp
Illumotion's picture
Upload folder using huggingface_hub
81bf9b4
raw
history blame
25.5 kB
#include "ggml.h"
#include "otherarch.h"
#include "utils.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#include <algorithm>
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#if defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#endif
// load the model's weights from a file
ModelLoadResult gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt_vocab & vocab, FileFormat file_format, int gpulayers) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return ModelLoadResult::FAIL;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return ModelLoadResult::FAIL;
}
}
int32_t origmaxctx = model.hparams.n_ctx;
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
fin.read((char *) &hparams.par_res, sizeof(hparams.par_res));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d (%d)\n", __func__, hparams.n_ctx,origmaxctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
printf("%s: par_res = %d\n", __func__, hparams.par_res);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
printf("%s: qntvr = %d\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
const int32_t n_vocab = model.hparams.n_vocab;
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return ModelLoadResult::FAIL;
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const size_t n_embd = hparams.n_embd;
const size_t n_layer = hparams.n_layer;
const size_t n_ctx = hparams.n_ctx;
const size_t n_vocab = hparams.n_vocab;
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g
//ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += std::max((size_t)origmaxctx,n_ctx)*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_k
ctx_size += std::max((size_t)origmaxctx,n_ctx)*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_v
ctx_size += (6 + 16*n_layer)*1024; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
// create the ggml context
{
struct ggml_init_params params;
params.mem_size = ctx_size;
params.mem_buffer = NULL;
params.no_alloc = false;
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return ModelLoadResult::FAIL;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
//model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab);
// map by name
model.tensors["gpt_neox.embed_in.weight"] = model.wte;
model.tensors["gpt_neox.final_layer_norm.weight"] = model.ln_f_g;
model.tensors["gpt_neox.final_layer_norm.bias"] = model.ln_f_b;
model.tensors["embed_out.weight"] = model.lmh_g;
//model.tensors["lm_head.bias"] = model.lmh_b;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight"] = layer.ln_1_g;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias"] = layer.ln_1_b;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight"] = layer.c_attn_attn_w;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias"] = layer.c_attn_attn_b;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight"] = layer.c_attn_proj_w;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias"] = layer.c_attn_proj_b;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight"] = layer.ln_2_g;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"] = layer.ln_2_b;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight"] = layer.c_mlp_fc_w;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias"] = layer.c_mlp_fc_b;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight"] = layer.c_mlp_proj_w;
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias"] = layer.c_mlp_proj_b;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int64_t n_mem = n_layer*std::max(origmaxctx,n_ctx);
const int64_t n_elements = n_embd*n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return ModelLoadResult::FAIL;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return ModelLoadResult::FAIL;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%5d, %5d], expected [%5d, %5d]\n",
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
return ModelLoadResult::FAIL;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
ggml_free(ctx);
return ModelLoadResult::RETRY_LOAD;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
}
fin.close();
//gpu offload
#if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS)
if(gpulayers>0)
{
const auto & hparams = model.hparams;
size_t vram_total = 0;
const int n_gpu = std::min(gpulayers, int(hparams.n_layer));
fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu);
for (int i = 0; i < n_gpu; ++i) {
const auto & layer = model.layers[i];
layer.c_attn_attn_w->backend = GGML_BACKEND_GPU;
layer.c_attn_proj_w->backend = GGML_BACKEND_GPU;
layer.c_mlp_fc_w->backend = GGML_BACKEND_GPU;
layer.c_mlp_proj_w->backend = GGML_BACKEND_GPU;
#if defined(GGML_USE_CLBLAST)
ggml_cl_transform_tensor(layer.c_attn_attn_w->data,layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w);
ggml_cl_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w);
ggml_cl_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w);
ggml_cl_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w);
#else
ggml_cuda_transform_tensor(layer.c_attn_attn_w->data,layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w);
ggml_cuda_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w);
ggml_cuda_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w);
ggml_cuda_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w);
#endif
}
fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
}
#endif
return ModelLoadResult::SUCCESS;
}
// feed-forward network
ggml_tensor * gpt_neox_ff(
const gpt_neox_layer &layer,
ggml_context * ctx0,
ggml_tensor * inp) {
ggml_tensor * cur = ggml_norm(ctx0, inp);
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, layer.ln_2_g, cur),
cur),
ggml_repeat(ctx0, layer.ln_2_b, cur));
cur = ggml_mul_mat(ctx0,
layer.c_mlp_fc_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, layer.c_mlp_fc_b, cur),
cur);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_mul_mat(ctx0,
layer.c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, layer.c_mlp_proj_b, cur),
cur);
return cur;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
bool gpt_neox_eval(
const gpt_neox_model & model,
const int n_threads,
const int n_past,
const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token,
bool use_scratch) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_rot;
static size_t buf_size = 256u*1024*1024;
static void * buf = malloc(buf_size);
// use 2 scratch buffers
// TODO: very hacky solution - reimplement in a more elegant way
static size_t scr0_size = (n_embd>2400?512u:256u)*1024*1024;
static size_t scr1_size = (n_embd>2400?512u:256u)*1024*1024;
static void * scr0 = malloc(scr0_size);
static void * scr1 = malloc(scr1_size);
if (mem_per_token > 0 && (mem_per_token*N*2 + 64u*1024*1024) > buf_size) {
const size_t buf_size_new = 360u*1024*1024 + 1.2*(mem_per_token*N); // add 10% to account for ggml object overhead
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
if (buf_size_new > buf_size)
{
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr)
{
fprintf(stderr, "%s: failed to allocate %zu bytes. Try reducing batch size.\n", __func__, buf_size);
return false;
}
}
}
struct ggml_init_params params;
params.mem_size = buf_size;
params.mem_buffer = buf;
params.no_alloc = false;
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
// wte
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
if(use_scratch){
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
}
// self-attention
{
{
cur = ggml_norm(ctx0, inpL);
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
}
// compute QKV
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_attn_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
cur);
}
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head));
// using mode = 2 for GPT-NeoX mode
Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, 0);
Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, 0);
// store key and value to memory
{
Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N));
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd,
( n_ctx)*ggml_element_size(model.memory_v),
(il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_tensor * Q =
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale_inplace(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_tensor * V =
ggml_view_3d(ctx0, model.memory_v,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_element_size(model.memory_v),
n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head,
il*n_ctx*ggml_element_size(model.memory_v)*n_embd);
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_proj_w,
cur);
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur);
}
}
if(use_scratch){
ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
}
if (hparams.par_res == 0) {
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
cur = gpt_neox_ff(model.layers[il], ctx0, inpFF);
// input for next layer
inpL = ggml_add(ctx0, cur, inpFF);
} else {
struct ggml_tensor * inpFF = cur;
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
// note here we pass inpL instead of cur
cur = gpt_neox_ff(model.layers[il], ctx0, inpL);
// layer input + FF
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
inpL = ggml_add(ctx0, cur, inpL);
}
}
if(use_scratch){
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
}
// norm
{
inpL = ggml_norm(ctx0, inpL);
// inpL = ln_f_g*inpL + ln_f_b
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.ln_f_g, inpL),
inpL),
ggml_repeat(ctx0, model.ln_f_b, inpL));
}
if(use_scratch){
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
}
// lm_head
{
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
//inpL = ggml_add(ctx0,
// ggml_repeat(ctx0, model.lmh_b, inpL),
// inpL);
}
// logits -> probs
//inpL = ggml_soft_max_inplace(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute (ctx0, &gf);
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}