Spaces:
Build error
Build error
static const size_t tensor_alignment = 32; | |
struct lora_info { | |
std::string filename; | |
float scale; | |
}; | |
struct export_lora_params { | |
std::string fn_model_base; | |
std::string fn_model_out; | |
std::vector<struct lora_info> lora; | |
int n_threads; | |
}; | |
struct lora_data { | |
struct lora_info info; | |
std::vector<uint8_t> data; | |
struct ggml_context * ctx; | |
uint32_t lora_r; | |
uint32_t lora_alpha; | |
}; | |
struct llama_file { | |
// use FILE * so we don't have to re-open the file to mmap | |
FILE * fp; | |
size_t size; | |
llama_file(const char * fname, const char * mode) { | |
fp = std::fopen(fname, mode); | |
if (fp == NULL) { | |
size = 0; | |
} else { | |
seek(0, SEEK_END); | |
size = tell(); | |
seek(0, SEEK_SET); | |
} | |
} | |
size_t tell() const { | |
__int64 ret = _ftelli64(fp); | |
long ret = std::ftell(fp); | |
GGML_ASSERT(ret != -1); // this really shouldn't fail | |
return (size_t) ret; | |
} | |
void seek(size_t offset, int whence) { | |
int ret = _fseeki64(fp, (__int64) offset, whence); | |
int ret = std::fseek(fp, (long) offset, whence); | |
GGML_ASSERT(ret == 0); // same | |
} | |
void read_raw(void * ptr, size_t size) { | |
if (size == 0) { | |
return; | |
} | |
errno = 0; | |
std::size_t ret = std::fread(ptr, size, 1, fp); | |
if (ferror(fp)) { | |
die_fmt("read error: %s", strerror(errno)); | |
} | |
if (ret != 1) { | |
die("unexpectedly reached end of file"); | |
} | |
} | |
std::uint32_t read_u32() { | |
std::uint32_t ret; | |
read_raw(&ret, sizeof(ret)); | |
return ret; | |
} | |
std::string read_string(std::uint32_t len) { | |
std::vector<char> chars(len); | |
read_raw(chars.data(), len); | |
return std::string(chars.data(), len); | |
} | |
void write_raw(const void * ptr, size_t size) { | |
if (size == 0) { | |
return; | |
} | |
errno = 0; | |
size_t ret = std::fwrite(ptr, size, 1, fp); | |
if (ret != 1) { | |
die_fmt("write error: %s", strerror(errno)); | |
} | |
} | |
void write_u32(std::uint32_t val) { | |
write_raw(&val, sizeof(val)); | |
} | |
bool eof() { | |
return tell() >= size; | |
} | |
~llama_file() { | |
if (fp) { | |
std::fclose(fp); | |
} | |
} | |
}; | |
static struct export_lora_params get_default_export_lora_params() { | |
struct export_lora_params result; | |
result.fn_model_base = ""; | |
result.fn_model_out = ""; | |
result.n_threads = GGML_DEFAULT_N_THREADS; | |
return result; | |
} | |
static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) { | |
fprintf(stderr, "usage: %s [options]\n", argv[0]); | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "options:\n"); | |
fprintf(stderr, " -h, --help show this help message and exit\n"); | |
fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str()); | |
fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str()); | |
fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n"); | |
fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n"); | |
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads); | |
} | |
static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) { | |
bool invalid_param = false; | |
std::string arg; | |
struct export_lora_params default_params = get_default_export_lora_params(); | |
const std::string arg_prefix = "--"; | |
for (int i = 1; i < argc; i++) { | |
arg = argv[i]; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (arg == "-m" || arg == "--model-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_model_base = argv[i]; | |
} else if (arg == "-o" || arg == "--model-out") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_model_out = argv[i]; | |
} else if (arg == "-l" || arg == "--lora") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
struct lora_info lora; | |
lora.filename = argv[i]; | |
lora.scale = 1.0f; | |
params->lora.push_back(lora); | |
} else if (arg == "-s" || arg == "--lora-scaled") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
struct lora_info lora; | |
lora.filename = argv[i]; | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
lora.scale = std::stof(argv[i]); | |
params->lora.push_back(lora); | |
} else if (arg == "-t" || arg == "--threads") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_threads = std::stoi(argv[i]); | |
if (params->n_threads <= 0) { | |
params->n_threads = std::thread::hardware_concurrency(); | |
} | |
} else { | |
fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str()); | |
export_lora_print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
} | |
if (params->fn_model_base == default_params.fn_model_base) { | |
fprintf(stderr, "error: please specify a filename for model-base.\n"); | |
export_lora_print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
if (params->fn_model_out == default_params.fn_model_out) { | |
fprintf(stderr, "error: please specify a filename for model-out.\n"); | |
export_lora_print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
if (invalid_param) { | |
fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str()); | |
export_lora_print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
return true; | |
} | |
static void free_lora(struct lora_data * lora) { | |
if (lora->ctx != NULL) { | |
ggml_free(lora->ctx); | |
} | |
delete lora; | |
} | |
static struct lora_data * load_lora(struct lora_info * info) { | |
struct lora_data * result = new struct lora_data; | |
result->info = *info; | |
result->ctx = NULL; | |
result->lora_r = 1; | |
result->lora_alpha = 1; | |
struct llama_file file(info->filename.c_str(), "rb"); | |
if (file.fp == NULL) { | |
fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n", | |
info->filename.c_str()); | |
free_lora(result); | |
return NULL; | |
} | |
struct ggml_init_params params_ggml; | |
params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES; | |
params_ggml.mem_buffer = NULL; | |
params_ggml.no_alloc = true; | |
result->ctx = ggml_init(params_ggml); | |
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla' | |
uint32_t magic = file.read_u32(); | |
if (magic != LLAMA_FILE_MAGIC_LORA) { | |
die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str()); | |
} | |
uint32_t version = file.read_u32(); | |
if (version != 1) { | |
die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str()); | |
} | |
result->lora_r = file.read_u32(); | |
result->lora_alpha = file.read_u32(); | |
// read tensor infos from file | |
std::vector<char> name_buf; | |
std::vector<struct ggml_tensor *> tensors; | |
std::vector<size_t> tensors_offset; | |
size_t total_nbytes_pad = 0; | |
while(!file.eof()) { | |
int64_t ne[4] = {1,1,1,1}; | |
uint32_t n_dims = file.read_u32(); | |
uint32_t namelen = file.read_u32(); | |
uint32_t type = file.read_u32(); | |
for (uint32_t k = 0; k < n_dims; ++k) { | |
ne[k] = (int64_t)file.read_u32(); | |
} | |
name_buf.clear(); | |
name_buf.resize(namelen + 1, '\0'); | |
file.read_raw(name_buf.data(), namelen); | |
file.seek((0-file.tell()) & 31, SEEK_CUR); | |
size_t offset = file.tell(); | |
struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne); | |
ggml_set_name(tensor, name_buf.data()); | |
size_t nbytes = ggml_nbytes(tensor); | |
size_t nbytes_pad = ggml_nbytes_pad(tensor); | |
total_nbytes_pad += nbytes_pad; | |
tensors.push_back(tensor); | |
tensors_offset.push_back(offset); | |
file.seek(nbytes, SEEK_CUR); | |
} | |
// read tensor data | |
result->data.resize(total_nbytes_pad); | |
size_t data_offset = 0; | |
for (size_t i = 0; i < tensors.size(); ++i) { | |
struct ggml_tensor * tensor = tensors[i]; | |
size_t offset = tensors_offset[i]; | |
size_t nbytes = ggml_nbytes(tensor); | |
size_t nbytes_pad = ggml_nbytes_pad(tensor); | |
file.seek(offset, SEEK_SET); | |
tensor->data = result->data.data() + data_offset; | |
file.read_raw(tensor->data, nbytes); | |
data_offset += nbytes_pad; | |
} | |
return result; | |
} | |
static struct ggml_cgraph * build_graph_lora( | |
struct ggml_context * ctx, | |
struct ggml_tensor * tensor, | |
struct ggml_tensor * lora_a, | |
struct ggml_tensor * lora_b, | |
float scaling | |
) { | |
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b); | |
if (scaling != 1.0f) { | |
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling)); | |
} | |
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab); | |
struct ggml_cgraph * gf = ggml_new_graph(ctx); | |
ggml_build_forward_expand (gf, res); | |
return gf; | |
} | |
static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) { | |
if (lora->ctx == NULL) { | |
return false; | |
} | |
std::string name = ggml_get_name(tensor); | |
std::string name_a = name + std::string(".loraA"); | |
std::string name_b = name + std::string(".loraB"); | |
struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str()); | |
struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str()); | |
if (lora_a == NULL || lora_b == NULL) { | |
return false; | |
} | |
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r; | |
struct ggml_init_params params; | |
params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5; | |
params.mem_buffer = NULL; | |
params.no_alloc = true; | |
struct ggml_context * ctx = NULL; | |
struct ggml_allocr * alloc = NULL; | |
struct ggml_cgraph * gf = NULL; | |
ctx = ggml_init(params); | |
alloc = ggml_allocr_new_measure(tensor_alignment); | |
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling); | |
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf); | |
ggml_allocr_free(alloc); | |
ggml_free(ctx); | |
static std::vector<uint8_t> data_compute; | |
data_compute.resize(alloc_size + tensor_alignment); | |
ctx = ggml_init(params); | |
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment); | |
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling); | |
ggml_allocr_alloc_graph(alloc, gf); | |
ggml_allocr_free(alloc); | |
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads); | |
static std::vector<uint8_t> data_work; | |
data_work.resize(cplan.work_size); | |
cplan.work_data = data_work.data(); | |
ggml_graph_compute(gf, &cplan); | |
ggml_free(ctx); | |
return true; | |
} | |
static void export_lora(struct export_lora_params * params) { | |
// load all loras | |
std::vector<struct lora_data *> loras; | |
for (size_t i = 0; i < params->lora.size(); ++i) { | |
struct lora_data * lora = load_lora(¶ms->lora[i]); | |
if (lora != NULL) { | |
loras.push_back(lora); | |
} | |
} | |
if (loras.size() == 0) { | |
fprintf(stderr, "warning: no lora adapters will be applied.\n"); | |
} | |
// open input file | |
struct llama_file fin(params->fn_model_base.c_str(), "rb"); | |
if (!fin.fp) { | |
die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str()); | |
} | |
// open base model gguf, read tensors without their data | |
struct ggml_context * ctx_in; | |
struct gguf_init_params params_gguf; | |
params_gguf.no_alloc = true; | |
params_gguf.ctx = &ctx_in; | |
struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf); | |
// create new gguf | |
struct gguf_context * gguf_out = gguf_init_empty(); | |
// copy meta data from base model: kv and tensors | |
gguf_set_kv(gguf_out, gguf_in); | |
int n_tensors = gguf_get_n_tensors(gguf_in); | |
for (int i=0; i < n_tensors; ++i) { | |
const char * name = gguf_get_tensor_name(gguf_in, i); | |
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name); | |
gguf_add_tensor(gguf_out, tensor); | |
} | |
// create output file | |
struct llama_file fout(params->fn_model_out.c_str(), "wb"); | |
if (!fout.fp) { | |
die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str()); | |
} | |
// write gguf meta data | |
std::vector<uint8_t> meta; | |
meta.resize(gguf_get_meta_size(gguf_out)); | |
gguf_get_meta_data(gguf_out, meta.data()); | |
fout.write_raw(meta.data(), meta.size()); | |
std::vector<uint8_t> data; | |
std::vector<uint8_t> padding; | |
for (int i=0; i < n_tensors; ++i) { | |
const char * name = gguf_get_tensor_name(gguf_in, i); | |
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name); | |
// read tensor data | |
data.resize(ggml_nbytes(tensor)); | |
tensor->data = data.data(); | |
size_t offset = gguf_get_tensor_offset(gguf_in, i); | |
fin.seek(offset + meta.size(), SEEK_SET); | |
fin.read_raw(data.data(), data.size()); | |
// apply all loras | |
for (size_t k = 0; k < loras.size(); ++k) { | |
apply_lora(tensor, loras[k], params->n_threads); | |
} | |
// write tensor data + padding | |
padding.clear(); | |
padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0); | |
GGML_ASSERT(fout.tell() == offset + meta.size()); | |
// fout.seek(offset + meta.size(), SEEK_SET); | |
fout.write_raw(data.data(), data.size()); | |
fout.write_raw(padding.data(), padding.size()); | |
if (i % 2 == 0) { | |
printf("."); | |
} | |
} | |
printf("\n"); | |
// close gguf | |
gguf_free(gguf_out); | |
gguf_free(gguf_in); | |
// free loras | |
for (size_t i = 0; i < loras.size(); ++i) { | |
free_lora(loras[i]); | |
} | |
} | |
int main(int argc, char ** argv) { | |
struct export_lora_params params = get_default_export_lora_params(); | |
if (!export_lora_params_parse(argc, argv, ¶ms)) { | |
return 1; | |
} | |
export_lora(¶ms); | |
return 0; | |
} | |