Illumotion commited on
Commit
6ba25f7
1 Parent(s): dc53b3a

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +21 -1
  2. CMakeLists.txt +2 -2
  3. Makefile +12 -7
  4. README.md +80 -7
  5. ci/README.md +25 -0
  6. ci/run.sh +409 -0
  7. convert-lora-to-ggml.py +1 -0
  8. convert.py +92 -44
  9. cudart64_110.dll +0 -0
  10. examples/CMakeLists.txt +2 -0
  11. examples/Miku.sh +9 -8
  12. examples/baby-llama/CMakeLists.txt +1 -0
  13. examples/baby-llama/baby-llama.cpp +15 -9
  14. examples/benchmark/CMakeLists.txt +1 -0
  15. examples/common.cpp +160 -94
  16. examples/common.h +18 -11
  17. examples/embd-input/CMakeLists.txt +2 -0
  18. examples/embd-input/README.md +1 -1
  19. examples/embd-input/llava.py +1 -1
  20. examples/embd-input/minigpt4.py +1 -1
  21. examples/embedding/CMakeLists.txt +1 -0
  22. examples/grammar-parser.cpp +423 -0
  23. examples/grammar-parser.h +29 -0
  24. examples/llama2-13b.sh +18 -0
  25. examples/llama2.sh +18 -0
  26. examples/llm.vim +23 -0
  27. examples/main/CMakeLists.txt +1 -0
  28. examples/main/README.md +1 -1
  29. examples/main/main.cpp +94 -27
  30. examples/make-ggml.py +92 -0
  31. examples/metal/CMakeLists.txt +1 -0
  32. examples/perplexity/CMakeLists.txt +1 -0
  33. examples/perplexity/perplexity.cpp +81 -3
  34. examples/quantize-stats/CMakeLists.txt +1 -0
  35. examples/quantize/CMakeLists.txt +1 -0
  36. examples/quantize/quantize.cpp +19 -95
  37. examples/save-load-state/CMakeLists.txt +1 -0
  38. examples/server/CMakeLists.txt +4 -0
  39. examples/server/README.md +2 -1
  40. examples/server/chat.sh +2 -0
  41. examples/server/index.html.hpp +668 -414
  42. examples/server/public/index.html +97 -28
  43. examples/server/server.cpp +71 -31
  44. examples/simple/CMakeLists.txt +1 -0
  45. examples/train-text-from-scratch/CMakeLists.txt +1 -0
  46. examples/train-text-from-scratch/train-text-from-scratch.cpp +20 -18
  47. expose.cpp +6 -1
  48. expose.h +13 -1
  49. ggml-cuda.cu +832 -121
  50. ggml-metal.h +7 -0
.gitignore CHANGED
@@ -16,6 +16,8 @@ build/
16
  build-em/
17
  build-debug/
18
  build-release/
 
 
19
  build-static/
20
  build-cublas/
21
  build-opencl/
@@ -25,6 +27,10 @@ build-no-accel/
25
  build-sanitize-addr/
26
  build-sanitize-thread/
27
  out/
 
 
 
 
28
 
29
  /main
30
  /quantize
@@ -58,6 +64,20 @@ qnt-*.txt
58
  perf-*.txt
59
 
60
  examples/jeopardy/results.txt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  koboldcpp.so
62
  koboldcpp_failsafe.so
63
  koboldcpp_openblas.so
@@ -70,4 +90,4 @@ koboldcpp_openblas_noavx2.dll
70
  koboldcpp_clblast.dll
71
  koboldcpp_cublas.dll
72
  cublas64_11.dll
73
- cublasLt64_11.dll
 
16
  build-em/
17
  build-debug/
18
  build-release/
19
+ build-ci-debug/
20
+ build-ci-release/
21
  build-static/
22
  build-cublas/
23
  build-opencl/
 
27
  build-sanitize-addr/
28
  build-sanitize-thread/
29
  out/
30
+ tmp/
31
+
32
+ models/*
33
+ models-mnt
34
 
35
  /main
36
  /quantize
 
64
  perf-*.txt
65
 
66
  examples/jeopardy/results.txt
67
+
68
+ pyproject.toml
69
+ poetry.lock
70
+ poetry.toml
71
+
72
+ # Test binaries
73
+ tests/test-double-float
74
+ tests/test-grad0
75
+ tests/test-opt
76
+ tests/test-quantize-fns
77
+ tests/test-quantize-perf
78
+ tests/test-sampling
79
+ tests/test-tokenizer-0
80
+
81
  koboldcpp.so
82
  koboldcpp_failsafe.so
83
  koboldcpp_openblas.so
 
90
  koboldcpp_clblast.dll
91
  koboldcpp_cublas.dll
92
  cublas64_11.dll
93
+ cublasLt64_11.dll
CMakeLists.txt CHANGED
@@ -97,9 +97,9 @@ if (LLAMA_CUBLAS)
97
 
98
  if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
99
  if (LLAMA_CUDA_DMMV_F16)
100
- set(CMAKE_CUDA_ARCHITECTURES "61") # needed for f16 CUDA intrinsics
101
  else()
102
- set(CMAKE_CUDA_ARCHITECTURES "52;61") # lowest CUDA 12 standard + lowest for integer intrinsics
103
  endif()
104
  endif()
105
  message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
 
97
 
98
  if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
99
  if (LLAMA_CUDA_DMMV_F16)
100
+ set(CMAKE_CUDA_ARCHITECTURES "60;61") # needed for f16 CUDA intrinsics
101
  else()
102
+ set(CMAKE_CUDA_ARCHITECTURES "37;52;61") # lowest CUDA 12 standard + lowest for integer intrinsics
103
  endif()
104
  endif()
105
  message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
Makefile CHANGED
@@ -144,7 +144,7 @@ ifdef LLAMA_CUBLAS
144
  CUBLASLD_FLAGS = -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
145
  CUBLAS_OBJS = ggml-cuda.o ggml_v2-cuda.o ggml_v2-cuda-legacy.o
146
  NVCC = nvcc
147
- NVCCFLAGS = --forward-unknown-to-host-compiler
148
  ifdef CUDA_DOCKER_ARCH
149
  NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
150
  else
@@ -331,21 +331,26 @@ llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h
331
  $(CXX) $(CXXFLAGS) -c $< -o $@
332
  common.o: examples/common.cpp examples/common.h
333
  $(CXX) $(CXXFLAGS) -c $< -o $@
 
 
334
  expose.o: expose.cpp expose.h
335
  $(CXX) $(CXXFLAGS) -c $< -o $@
336
- gpttype_adapter_failsafe.o: gpttype_adapter.cpp
 
 
 
337
  $(CXX) $(CXXFLAGS) $(FAILSAFE_FLAGS) -c $< -o $@
338
- gpttype_adapter.o: gpttype_adapter.cpp
339
  $(CXX) $(CXXFLAGS) -c $< -o $@
340
- gpttype_adapter_clblast.o: gpttype_adapter.cpp
341
  $(CXX) $(CXXFLAGS) $(CLBLAST_FLAGS) -c $< -o $@
342
- gpttype_adapter_cublas.o: gpttype_adapter.cpp
343
  $(CXX) $(CXXFLAGS) $(CUBLAS_FLAGS) -c $< -o $@
344
 
345
  clean:
346
  rm -vf *.o main quantize_llama quantize_gpt2 quantize_gptj quantize_neox quantize_mpt quantize-stats perplexity embedding benchmark-matmult save-load-state main.exe quantize_llama.exe quantize_gptj.exe quantize_gpt2.exe quantize_neox.exe quantize_mpt.exe koboldcpp.dll koboldcpp_openblas.dll koboldcpp_failsafe.dll koboldcpp_openblas_noavx2.dll koboldcpp_clblast.dll koboldcpp_cublas.dll koboldcpp.so koboldcpp_openblas.so koboldcpp_failsafe.so koboldcpp_openblas_noavx2.so koboldcpp_clblast.so koboldcpp_cublas.so
347
 
348
- main: examples/main/main.cpp build-info.h ggml.o k_quants.o llama.o common.o $(OBJS)
349
  $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
350
  @echo
351
  @echo '==== Run ./main -h for help. ===='
@@ -358,7 +363,7 @@ koboldcpp_openblas: ggml_openblas.o ggml_v2_openblas.o ggml_v1.o expose.o common
358
  $(OPENBLAS_BUILD)
359
  koboldcpp_failsafe: ggml_failsafe.o ggml_v2_failsafe.o ggml_v1_failsafe.o expose.o common.o gpttype_adapter_failsafe.o k_quants_failsafe.o $(OBJS)
360
  $(FAILSAFE_BUILD)
361
- koboldcpp_openblas_noavx2: ggml_openblas_noavx2.o ggml_v2_openblas_noavx2.o ggml_v1_failsafe.o expose.o common.o gpttype_adapter.o k_quants_noavx2.o $(OBJS)
362
  $(OPENBLAS_NOAVX2_BUILD)
363
  koboldcpp_clblast: ggml_clblast.o ggml_v2_clblast.o ggml_v1.o expose.o common.o gpttype_adapter_clblast.o ggml-opencl.o ggml_v2-opencl.o ggml_v2-opencl-legacy.o k_quants.o $(OBJS)
364
  $(CLBLAST_BUILD)
 
144
  CUBLASLD_FLAGS = -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
145
  CUBLAS_OBJS = ggml-cuda.o ggml_v2-cuda.o ggml_v2-cuda-legacy.o
146
  NVCC = nvcc
147
+ NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
148
  ifdef CUDA_DOCKER_ARCH
149
  NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
150
  else
 
331
  $(CXX) $(CXXFLAGS) -c $< -o $@
332
  common.o: examples/common.cpp examples/common.h
333
  $(CXX) $(CXXFLAGS) -c $< -o $@
334
+ grammar-parser.o: examples/grammar-parser.cpp examples/grammar-parser.h
335
+ $(CXX) $(CXXFLAGS) -c $< -o $@
336
  expose.o: expose.cpp expose.h
337
  $(CXX) $(CXXFLAGS) -c $< -o $@
338
+
339
+ # idiotic "for easier compilation"
340
+ GPTTYPE_ADAPTER = gpttype_adapter.cpp otherarch/llama_v2.cpp llama.cpp otherarch/utils.cpp otherarch/gptj_v1.cpp otherarch/gptj_v2.cpp otherarch/gptj_v3.cpp otherarch/gpt2_v1.cpp otherarch/gpt2_v2.cpp otherarch/gpt2_v3.cpp otherarch/rwkv_v2.cpp otherarch/rwkv_v3.cpp otherarch/neox_v2.cpp otherarch/neox_v3.cpp otherarch/mpt_v3.cpp ggml.h ggml-cuda.h llama.h llama-util.h
341
+ gpttype_adapter_failsafe.o: $(GPTTYPE_ADAPTER)
342
  $(CXX) $(CXXFLAGS) $(FAILSAFE_FLAGS) -c $< -o $@
343
+ gpttype_adapter.o: $(GPTTYPE_ADAPTER)
344
  $(CXX) $(CXXFLAGS) -c $< -o $@
345
+ gpttype_adapter_clblast.o: $(GPTTYPE_ADAPTER)
346
  $(CXX) $(CXXFLAGS) $(CLBLAST_FLAGS) -c $< -o $@
347
+ gpttype_adapter_cublas.o: $(GPTTYPE_ADAPTER)
348
  $(CXX) $(CXXFLAGS) $(CUBLAS_FLAGS) -c $< -o $@
349
 
350
  clean:
351
  rm -vf *.o main quantize_llama quantize_gpt2 quantize_gptj quantize_neox quantize_mpt quantize-stats perplexity embedding benchmark-matmult save-load-state main.exe quantize_llama.exe quantize_gptj.exe quantize_gpt2.exe quantize_neox.exe quantize_mpt.exe koboldcpp.dll koboldcpp_openblas.dll koboldcpp_failsafe.dll koboldcpp_openblas_noavx2.dll koboldcpp_clblast.dll koboldcpp_cublas.dll koboldcpp.so koboldcpp_openblas.so koboldcpp_failsafe.so koboldcpp_openblas_noavx2.so koboldcpp_clblast.so koboldcpp_cublas.so
352
 
353
+ main: examples/main/main.cpp build-info.h ggml.o k_quants.o llama.o common.o grammar-parser.o $(OBJS)
354
  $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
355
  @echo
356
  @echo '==== Run ./main -h for help. ===='
 
363
  $(OPENBLAS_BUILD)
364
  koboldcpp_failsafe: ggml_failsafe.o ggml_v2_failsafe.o ggml_v1_failsafe.o expose.o common.o gpttype_adapter_failsafe.o k_quants_failsafe.o $(OBJS)
365
  $(FAILSAFE_BUILD)
366
+ koboldcpp_openblas_noavx2: ggml_openblas_noavx2.o ggml_v2_openblas_noavx2.o ggml_v1_failsafe.o expose.o common.o gpttype_adapter_failsafe.o k_quants_noavx2.o $(OBJS)
367
  $(OPENBLAS_NOAVX2_BUILD)
368
  koboldcpp_clblast: ggml_clblast.o ggml_v2_clblast.o ggml_v1.o expose.o common.o gpttype_adapter_clblast.o ggml-opencl.o ggml_v2-opencl.o ggml_v2-opencl-legacy.o k_quants.o $(OBJS)
369
  $(CLBLAST_BUILD)
README.md CHANGED
@@ -1,7 +1,80 @@
1
- ---
2
- title: Koboldcpp
3
- sdk: docker
4
- emoji: 💻
5
- colorFrom: blue
6
- colorTo: purple
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # koboldcpp
2
+
3
+ KoboldCpp is an easy-to-use AI text-generation software for GGML models. It's a single self contained distributable from Concedo, that builds off llama.cpp, and adds a versatile Kobold API endpoint, additional format support, backward compatibility, as well as a fancy UI with persistent stories, editing tools, save formats, memory, world info, author's note, characters, scenarios and everything Kobold and Kobold Lite have to offer.
4
+
5
+ ![Preview](media/preview.png)
6
+
7
+ ## Usage
8
+ - **[Download the latest .exe release here](https://github.com/LostRuins/koboldcpp/releases/latest)** or clone the git repo.
9
+ - Windows binaries are provided in the form of **koboldcpp.exe**, which is a pyinstaller wrapper for a few **.dll** files and **koboldcpp.py**. If you feel concerned, you may prefer to rebuild it yourself with the provided makefiles and scripts.
10
+ - Weights are not included, you can use the official llama.cpp `quantize.exe` to generate them from your official weight files (or download them from other places such as [TheBloke's Huggingface](https://huggingface.co/TheBloke).
11
+ - To run, execute **koboldcpp.exe** or drag and drop your quantized `ggml_model.bin` file onto the .exe, and then connect with Kobold or Kobold Lite. If you're not on windows, then run the script **KoboldCpp.py** after compiling the libraries.
12
+ - Launching with no command line arguments displays a GUI containing a subset of configurable settings. Generally you dont have to change much besides the `Presets` and `GPU Layers`. Read the `--help` for more info about each settings.
13
+ - By default, you can connect to http://localhost:5001
14
+ - You can also run it using the command line `koboldcpp.exe [ggml_model.bin] [port]`. For info, please check `koboldcpp.exe --help`
15
+ - Default context size to small? Try `--contextsize 3072` to 1.5x your context size! without much perplexity gain. Note that you'll have to increase the max context in the Kobold Lite UI as well (click and edit the number text field).
16
+ - Big context too slow? Try the `--smartcontext` flag to reduce prompt processing frequency. Also, you can try to run with your GPU using CLBlast, with `--useclblast` flag for a speedup
17
+ - Want even more speedup? Combine `--useclblast` with `--gpulayers` to offload entire layers to the GPU! **Much faster, but uses more VRAM**. Experiment to determine number of layers to offload, and reduce by a few if you run out of memory.
18
+ - If you are having crashes or issues, you can try turning off BLAS with the `--noblas` flag. You can also try running in a non-avx2 compatibility mode with `--noavx2`. Lastly, you can try turning off mmap with `--nommap`.
19
+
20
+ For more information, be sure to run the program with the `--help` flag.
21
+
22
+ ## OSX and Linux
23
+ - You will have to compile your binaries from source. A makefile is provided, simply run `make`
24
+ - If you want you can also link your own install of OpenBLAS manually with `make LLAMA_OPENBLAS=1`
25
+ - Alternatively, if you want you can also link your own install of CLBlast manually with `make LLAMA_CLBLAST=1`, for this you will need to obtain and link OpenCL and CLBlast libraries.
26
+ - For Arch Linux: Install `cblas` `openblas` and `clblast`.
27
+ - For Debian: Install `libclblast-dev` and `libopenblas-dev`.
28
+ - For a full featured build, do `make LLAMA_OPENBLAS=1 LLAMA_CLBLAST=1 LLAMA_CUBLAS=1`
29
+ - After all binaries are built, you can run the python script with the command `koboldcpp.py [ggml_model.bin] [port]`
30
+ - Note: Many OSX users have found that the using Accelerate is actually faster than OpenBLAS. To try, you may wish to run with `--noblas` and compare speeds.
31
+
32
+ ## Compiling on Windows
33
+ - You're encouraged to use the .exe released, but if you want to compile your binaries from source at Windows, the easiest way is:
34
+ - Use the latest release of w64devkit (https://github.com/skeeto/w64devkit). Be sure to use the "vanilla one", not i686 or other different stuff. If you try they will conflit with the precompiled libs!
35
+ - Make sure you are using the w64devkit integrated terminal, then run 'make' at the KoboldCpp source folder. This will create the .dll files.
36
+ - If you want to generate the .exe file, make sure you have the python module PyInstaller installed with pip ('pip install PyInstaller').
37
+ - Run the script make_pyinstaller.bat at a regular terminal (or Windows Explorer).
38
+ - The koboldcpp.exe file will be at your dist folder.
39
+ - If you wish to use your own version of the additional Windows libraries (OpenCL, CLBlast and OpenBLAS), you can do it with:
40
+ - OpenCL - tested with https://github.com/KhronosGroup/OpenCL-SDK . If you wish to compile it, follow the repository instructions. You will need vcpkg.
41
+ - CLBlast - tested with https://github.com/CNugteren/CLBlast . If you wish to compile it you will need to reference the OpenCL files. It will only generate the ".lib" file if you compile using MSVC.
42
+ - OpenBLAS - tested with https://github.com/xianyi/OpenBLAS .
43
+ - Move the respectives .lib files to the /lib folder of your project, overwriting the older files.
44
+ - Also, replace the existing versions of the corresponding .dll files located in the project directory root (e.g. libopenblas.dll).
45
+ - Make the KoboldCPP project using the instructions above.
46
+
47
+ ## Android (Termux) Alternative method
48
+ - See https://github.com/ggerganov/llama.cpp/pull/1828/files
49
+
50
+ ## Using CuBLAS
51
+ - If you're on Windows with an Nvidia GPU you can get CUDA support out of the box using the `--usecublas` flag, make sure you select the correct .exe with CUDA support.
52
+ - You can attempt a CuBLAS build with `LLAMA_CUBLAS=1` or using the provided CMake file (best for visual studio users). If you use the CMake file to build, copy the `koboldcpp_cublas.dll` generated into the same directory as the `koboldcpp.py` file. If you are bundling executables, you may need to include CUDA dynamic libraries (such as `cublasLt64_11.dll` and `cublas64_11.dll`) in order for the executable to work correctly on a different PC.
53
+
54
+ ## Questions and Help
55
+ - **First, please check out [The KoboldCpp FAQ and Knowledgebase](https://github.com/LostRuins/koboldcpp/wiki) which may already have answers to your questions! Also please search through past issues and discussions.**
56
+ - If you cannot find an answer, open an issue on this github, or find us on the [KoboldAI Discord](https://koboldai.org/discord).
57
+
58
+ ## Considerations
59
+ - For Windows: No installation, single file executable, (It Just Works)
60
+ - Since v1.0.6, requires libopenblas, the prebuilt windows binaries are included in this repo. If not found, it will fall back to a mode without BLAS.
61
+ - Since v1.15, requires CLBlast if enabled, the prebuilt windows binaries are included in this repo. If not found, it will fall back to a mode without CLBlast.
62
+ - Since v1.33, you can set the context size to be above what the model supports officially. It does increases perplexity but should still work well below 4096 even on untuned models. (For GPT-NeoX, GPT-J, and LLAMA models) Customize this with `--ropeconfig`.
63
+ - **I plan to keep backwards compatibility with ALL past llama.cpp AND alpaca.cpp models**. But you are also encouraged to reconvert/update your models if possible for best results.
64
+
65
+ ## License
66
+ - The original GGML library and llama.cpp by ggerganov are licensed under the MIT License
67
+ - However, Kobold Lite is licensed under the AGPL v3.0 License
68
+ - The other files are also under the AGPL v3.0 License unless otherwise stated
69
+
70
+ ## Notes
71
+ - Generation delay scales linearly with original prompt length. If OpenBLAS is enabled then prompt ingestion becomes about 2-3x faster. This is automatic on windows, but will require linking on OSX and Linux. CLBlast speeds this up even further, and `--gpulayers` + `--useclblast` more so.
72
+ - I have heard of someone claiming a false AV positive report. The exe is a simple pyinstaller bundle that includes the necessary python scripts and dlls to run. If this still concerns you, you might wish to rebuild everything from source code using the makefile, and you can rebuild the exe yourself with pyinstaller by using `make_pyinstaller.bat`
73
+ - Supported GGML models (Includes backward compatibility for older versions/legacy GGML models, though some newer features might be unavailable):
74
+ - LLAMA and LLAMA2 (LLaMA / Alpaca / GPT4All / Vicuna / Koala / Pygmalion 7B / Metharme 7B / WizardLM and many more)
75
+ - GPT-2 / Cerebras
76
+ - GPT-J
77
+ - RWKV
78
+ - GPT-NeoX / Pythia / StableLM / Dolly / RedPajama
79
+ - MPT models
80
+
ci/README.md ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CI
2
+
3
+ In addition to [Github Actions](https://github.com/ggerganov/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
4
+
5
+ https://github.com/ggml-org/ci
6
+
7
+ It monitors the `master` branch for new commits and runs the
8
+ [ci/run.sh](https://github.com/ggerganov/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
9
+ to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
10
+ to cover various hardware architectures, including GPU and Apple Silicon instances.
11
+
12
+ Collaborators can optionally trigger the CI run by adding the `ggml-ci` keyword to their commit message.
13
+ Only the branches of this repo are monitored for this keyword.
14
+
15
+ It is a good practice, before publishing changes to execute the full CI locally on your machine:
16
+
17
+ ```bash
18
+ mkdir tmp
19
+
20
+ # CPU-only build
21
+ bash ./ci/run.sh ./tmp/results ./tmp/mnt
22
+
23
+ # with CUDA support
24
+ GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
25
+ ```
ci/run.sh ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #/bin/bash
2
+ #
3
+ # sample usage:
4
+ #
5
+ # mkdir tmp
6
+ #
7
+ # # CPU-only build
8
+ # bash ./ci/run.sh ./tmp/results ./tmp/mnt
9
+ #
10
+ # # with CUDA support
11
+ # GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
12
+ #
13
+
14
+ if [ -z "$2" ]; then
15
+ echo "usage: $0 <output-dir> <mnt-dir>"
16
+ exit 1
17
+ fi
18
+
19
+ mkdir -p "$1"
20
+ mkdir -p "$2"
21
+
22
+ OUT=$(realpath "$1")
23
+ MNT=$(realpath "$2")
24
+
25
+ rm -v $OUT/*.log
26
+ rm -v $OUT/*.exit
27
+ rm -v $OUT/*.md
28
+
29
+ sd=`dirname $0`
30
+ cd $sd/../
31
+ SRC=`pwd`
32
+
33
+ ## helpers
34
+
35
+ # download a file if it does not exist or if it is outdated
36
+ function gg_wget {
37
+ local out=$1
38
+ local url=$2
39
+
40
+ local cwd=`pwd`
41
+
42
+ mkdir -p $out
43
+ cd $out
44
+
45
+ # should not re-download if file is the same
46
+ wget -nv -N $url
47
+
48
+ cd $cwd
49
+ }
50
+
51
+ function gg_printf {
52
+ printf -- "$@" >> $OUT/README.md
53
+ }
54
+
55
+ function gg_run {
56
+ ci=$1
57
+
58
+ set -o pipefail
59
+ set -x
60
+
61
+ gg_run_$ci | tee $OUT/$ci.log
62
+ cur=$?
63
+ echo "$cur" > $OUT/$ci.exit
64
+
65
+ set +x
66
+ set +o pipefail
67
+
68
+ gg_sum_$ci
69
+
70
+ ret=$((ret | cur))
71
+ }
72
+
73
+ ## ci
74
+
75
+ # ctest_debug
76
+
77
+ function gg_run_ctest_debug {
78
+ cd ${SRC}
79
+
80
+ rm -rf build-ci-debug && mkdir build-ci-debug && cd build-ci-debug
81
+
82
+ set -e
83
+
84
+ (time cmake -DCMAKE_BUILD_TYPE=Debug .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
85
+ (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
86
+
87
+ (time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
88
+
89
+ set +e
90
+ }
91
+
92
+ function gg_sum_ctest_debug {
93
+ gg_printf '### %s\n\n' "${ci}"
94
+
95
+ gg_printf 'Runs ctest in debug mode\n'
96
+ gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
97
+ gg_printf '```\n'
98
+ gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
99
+ gg_printf '```\n'
100
+ gg_printf '\n'
101
+ }
102
+
103
+ # ctest_release
104
+
105
+ function gg_run_ctest_release {
106
+ cd ${SRC}
107
+
108
+ rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
109
+
110
+ set -e
111
+
112
+ (time cmake -DCMAKE_BUILD_TYPE=Release .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
113
+ (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
114
+
115
+ if [ -z ${GG_BUILD_LOW_PERF} ]; then
116
+ (time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log
117
+ else
118
+ (time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
119
+ fi
120
+
121
+ set +e
122
+ }
123
+
124
+ function gg_sum_ctest_release {
125
+ gg_printf '### %s\n\n' "${ci}"
126
+
127
+ gg_printf 'Runs ctest in release mode\n'
128
+ gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
129
+ gg_printf '```\n'
130
+ gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
131
+ gg_printf '```\n'
132
+ }
133
+
134
+ # open_llama_3b_v2
135
+
136
+ function gg_run_open_llama_3b_v2 {
137
+ cd ${SRC}
138
+
139
+ gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json
140
+ gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model
141
+ gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json
142
+ gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json
143
+ gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
144
+ gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
145
+
146
+ gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
147
+ unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
148
+ head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
149
+
150
+ path_models="../models-mnt/open-llama/3B-v2"
151
+ path_wiki="../models-mnt/wikitext/wikitext-2-raw"
152
+
153
+ rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
154
+
155
+ set -e
156
+
157
+ (time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
158
+ (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
159
+
160
+ python3 ../convert.py ${path_models}
161
+
162
+ model_f16="${path_models}/ggml-model-f16.bin"
163
+ model_q8_0="${path_models}/ggml-model-q8_0.bin"
164
+ model_q4_0="${path_models}/ggml-model-q4_0.bin"
165
+ model_q4_1="${path_models}/ggml-model-q4_1.bin"
166
+ model_q5_0="${path_models}/ggml-model-q5_0.bin"
167
+ model_q5_1="${path_models}/ggml-model-q5_1.bin"
168
+ model_q2_k="${path_models}/ggml-model-q2_k.bin"
169
+ model_q3_k="${path_models}/ggml-model-q3_k.bin"
170
+ model_q4_k="${path_models}/ggml-model-q4_k.bin"
171
+ model_q5_k="${path_models}/ggml-model-q5_k.bin"
172
+ model_q6_k="${path_models}/ggml-model-q6_k.bin"
173
+
174
+ wiki_test_60="${path_wiki}/wiki.test-60.raw"
175
+
176
+ ./bin/quantize ${model_f16} ${model_q8_0} q8_0
177
+ ./bin/quantize ${model_f16} ${model_q4_0} q4_0
178
+ ./bin/quantize ${model_f16} ${model_q4_1} q4_1
179
+ ./bin/quantize ${model_f16} ${model_q5_0} q5_0
180
+ ./bin/quantize ${model_f16} ${model_q5_1} q5_1
181
+ ./bin/quantize ${model_f16} ${model_q2_k} q2_k
182
+ ./bin/quantize ${model_f16} ${model_q3_k} q3_k
183
+ ./bin/quantize ${model_f16} ${model_q4_k} q4_k
184
+ ./bin/quantize ${model_f16} ${model_q5_k} q5_k
185
+ ./bin/quantize ${model_f16} ${model_q6_k} q6_k
186
+
187
+ (time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
188
+ (time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
189
+ (time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
190
+ (time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
191
+ (time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
192
+ (time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
193
+ (time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
194
+ (time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
195
+ (time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
196
+ (time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
197
+ (time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
198
+
199
+ (time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
200
+ (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
201
+ (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
202
+ (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
203
+ (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
204
+ (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
205
+ (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
206
+ (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
207
+ (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
208
+ (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
209
+ (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
210
+
211
+ function check_ppl {
212
+ qnt="$1"
213
+ ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
214
+
215
+ if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
216
+ printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
217
+ return 20
218
+ fi
219
+
220
+ printf ' - %s @ %s OK\n' "$qnt" "$ppl"
221
+ return 0
222
+ }
223
+
224
+ check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
225
+ check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
226
+ check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
227
+ check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
228
+ check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
229
+ check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
230
+ check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
231
+ check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
232
+ check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
233
+ check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
234
+ check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
235
+
236
+ set +e
237
+ }
238
+
239
+ function gg_sum_open_llama_3b_v2 {
240
+ gg_printf '### %s\n\n' "${ci}"
241
+
242
+ gg_printf 'OpenLLaMA 3B-v2:\n'
243
+ gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
244
+ gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
245
+ gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
246
+ gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
247
+ gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
248
+ gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
249
+ gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
250
+ gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
251
+ gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
252
+ gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
253
+ gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
254
+ gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
255
+ gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
256
+ }
257
+
258
+ # open_llama_7b_v2
259
+ # requires: GG_BUILD_CUDA
260
+
261
+ function gg_run_open_llama_7b_v2 {
262
+ cd ${SRC}
263
+
264
+ gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/config.json
265
+ gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/tokenizer.model
266
+ gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/tokenizer_config.json
267
+ gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/special_tokens_map.json
268
+ gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/pytorch_model.bin.index.json
269
+ gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00001-of-00002.bin
270
+ gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
271
+ gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
272
+
273
+ gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
274
+ unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
275
+
276
+ path_models="../models-mnt/open-llama/7B-v2"
277
+ path_wiki="../models-mnt/wikitext/wikitext-2-raw"
278
+
279
+ rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
280
+
281
+ set -e
282
+
283
+ (time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
284
+ (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
285
+
286
+ python3 ../convert.py ${path_models}
287
+
288
+ model_f16="${path_models}/ggml-model-f16.bin"
289
+ model_q8_0="${path_models}/ggml-model-q8_0.bin"
290
+ model_q4_0="${path_models}/ggml-model-q4_0.bin"
291
+ model_q4_1="${path_models}/ggml-model-q4_1.bin"
292
+ model_q5_0="${path_models}/ggml-model-q5_0.bin"
293
+ model_q5_1="${path_models}/ggml-model-q5_1.bin"
294
+ model_q2_k="${path_models}/ggml-model-q2_k.bin"
295
+ model_q3_k="${path_models}/ggml-model-q3_k.bin"
296
+ model_q4_k="${path_models}/ggml-model-q4_k.bin"
297
+ model_q5_k="${path_models}/ggml-model-q5_k.bin"
298
+ model_q6_k="${path_models}/ggml-model-q6_k.bin"
299
+
300
+ wiki_test="${path_wiki}/wiki.test.raw"
301
+
302
+ ./bin/quantize ${model_f16} ${model_q8_0} q8_0
303
+ ./bin/quantize ${model_f16} ${model_q4_0} q4_0
304
+ ./bin/quantize ${model_f16} ${model_q4_1} q4_1
305
+ ./bin/quantize ${model_f16} ${model_q5_0} q5_0
306
+ ./bin/quantize ${model_f16} ${model_q5_1} q5_1
307
+ ./bin/quantize ${model_f16} ${model_q2_k} q2_k
308
+ ./bin/quantize ${model_f16} ${model_q3_k} q3_k
309
+ ./bin/quantize ${model_f16} ${model_q4_k} q4_k
310
+ ./bin/quantize ${model_f16} ${model_q5_k} q5_k
311
+ ./bin/quantize ${model_f16} ${model_q6_k} q6_k
312
+
313
+ (time ./bin/main --model ${model_f16} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
314
+ (time ./bin/main --model ${model_q8_0} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
315
+ (time ./bin/main --model ${model_q4_0} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
316
+ (time ./bin/main --model ${model_q4_1} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
317
+ (time ./bin/main --model ${model_q5_0} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
318
+ (time ./bin/main --model ${model_q5_1} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
319
+ (time ./bin/main --model ${model_q2_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
320
+ (time ./bin/main --model ${model_q3_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
321
+ (time ./bin/main --model ${model_q4_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
322
+ (time ./bin/main --model ${model_q5_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
323
+ (time ./bin/main --model ${model_q6_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
324
+
325
+ (time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
326
+ (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
327
+ (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
328
+ (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
329
+ (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
330
+ (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
331
+ (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
332
+ (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
333
+ (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
334
+ (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
335
+ (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
336
+
337
+ function check_ppl {
338
+ qnt="$1"
339
+ ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
340
+
341
+ if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
342
+ printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
343
+ return 20
344
+ fi
345
+
346
+ printf ' - %s @ %s OK\n' "$qnt" "$ppl"
347
+ return 0
348
+ }
349
+
350
+ check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
351
+ check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
352
+ check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
353
+ check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
354
+ check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
355
+ check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
356
+ check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
357
+ check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
358
+ check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
359
+ check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
360
+ check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
361
+
362
+ set +e
363
+ }
364
+
365
+ function gg_sum_open_llama_7b_v2 {
366
+ gg_printf '### %s\n\n' "${ci}"
367
+
368
+ gg_printf 'OpenLLaMA 7B-v2:\n'
369
+ gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
370
+ gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
371
+ gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
372
+ gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
373
+ gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
374
+ gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
375
+ gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
376
+ gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
377
+ gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
378
+ gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
379
+ gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
380
+ gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
381
+ gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
382
+ }
383
+
384
+ ## main
385
+
386
+ if [ -z ${GG_BUILD_LOW_PERF} ]; then
387
+ rm -rf ${SRC}/models-mnt
388
+
389
+ mnt_models=${MNT}/models
390
+ mkdir -p ${mnt_models}
391
+ ln -sfn ${mnt_models} ${SRC}/models-mnt
392
+
393
+ python3 -m pip install -r ${SRC}/requirements.txt
394
+ fi
395
+
396
+ ret=0
397
+
398
+ test $ret -eq 0 && gg_run ctest_debug
399
+ test $ret -eq 0 && gg_run ctest_release
400
+
401
+ if [ -z ${GG_BUILD_LOW_PERF} ]; then
402
+ if [ -z ${GG_BUILD_CUDA} ]; then
403
+ test $ret -eq 0 && gg_run open_llama_3b_v2
404
+ else
405
+ test $ret -eq 0 && gg_run open_llama_7b_v2
406
+ fi
407
+ fi
408
+
409
+ exit $ret
convert-lora-to-ggml.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import json
2
  import os
3
  import re
 
1
+ #!/usr/bin/env python
2
  import json
3
  import os
4
  import re
convert.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import argparse
2
  import concurrent.futures
3
  import copy
@@ -141,9 +142,9 @@ def find_n_mult(n_ff: int, n_embd: int) -> int:
141
  @dataclass
142
  class Params:
143
  n_vocab: int
144
- n_embd: int
145
- n_mult: int
146
- n_head: int
147
  n_layer: int
148
 
149
  @staticmethod
@@ -166,11 +167,11 @@ class Params:
166
  n_head=n_embd // 128 # guessed
167
 
168
  return Params(
169
- n_vocab=n_vocab,
170
- n_embd=n_embd,
171
- n_mult=256,
172
- n_head=n_head,
173
- n_layer=n_layer,
174
  )
175
 
176
  @staticmethod
@@ -178,28 +179,53 @@ class Params:
178
  config = json.load(open(config_path))
179
 
180
  n_vocab = config["vocab_size"];
181
- n_embd = config["hidden_size"];
182
- n_head = config["num_attention_heads"];
183
  n_layer = config["num_hidden_layers"];
184
- n_ff = config["intermediate_size"];
185
 
186
  n_mult = find_n_mult(n_ff, n_embd);
187
 
188
  return Params(
189
- n_vocab=n_vocab,
190
- n_embd=n_embd,
191
- n_mult=n_mult,
192
- n_head=n_head,
193
- n_layer=n_layer,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
  )
195
 
196
  @staticmethod
197
  def load(model_plus: 'ModelPlus') -> 'Params':
 
198
  orig_config_path = model_plus.paths[0].parent / "params.json"
199
- hf_transformer_config_path = model_plus.paths[0].parent / "config.json"
200
 
201
- if hf_transformer_config_path.exists():
202
- params = Params.loadHFTransformerJson(model_plus.model, hf_transformer_config_path)
 
 
203
  else:
204
  params = Params.guessed(model_plus.model)
205
 
@@ -208,14 +234,21 @@ class Params:
208
 
209
 
210
  class SentencePieceVocab:
211
- def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
212
- self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
 
 
 
 
213
  added_tokens: Dict[str, int]
214
  if fname_added_tokens is not None:
215
  added_tokens = json.load(open(fname_added_tokens))
216
  else:
217
  added_tokens = {}
218
- vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
 
 
 
219
  expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
220
  actual_ids = sorted(added_tokens.values())
221
  if expected_ids != actual_ids:
@@ -229,22 +262,32 @@ class SentencePieceVocab:
229
 
230
  def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
231
  tokenizer = self.sentencepiece_tokenizer
232
- for i in range(tokenizer.vocab_size()):
 
 
 
 
233
  text: bytes
234
- if tokenizer.is_unknown(i):
235
- text = " \u2047 ".encode("utf-8")
236
- elif tokenizer.is_control(i):
237
- text = b""
238
- elif tokenizer.is_byte(i):
239
- piece = tokenizer.id_to_piece(i)
240
- if len(piece) != 6:
241
- raise Exception(f"Invalid token: {piece}")
242
- byte_value = int(piece[3:-1], 16)
243
- text = struct.pack("B", byte_value)
244
- else:
245
- text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
246
- score: float = tokenizer.get_score(i)
247
  yield text, score
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248
 
249
  def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
250
  for text in self.added_tokens_list:
@@ -1035,8 +1078,7 @@ class OutputFile:
1035
  @staticmethod
1036
  def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
1037
  of = OutputFile(fname_out)
1038
- params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0,
1039
- n_head=1, n_layer=0)
1040
  of = OutputFile(fname_out)
1041
  of.write_file_header(params, file_type=GGMLFileType.AllF32)
1042
  of.write_vocab(vocab)
@@ -1171,14 +1213,18 @@ def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
1171
  return {name: model[name] for name in TENSORS_LIST if name in model}
1172
 
1173
 
1174
- def load_vocab(path: Path) -> SentencePieceVocab:
 
1175
  # Be extra-friendly and accept either a file or a directory. Also, if it's
1176
  # a directory, it might be the model directory, and tokenizer.model might
1177
  # be in the parent of that.
1178
  if path.is_dir():
1179
- path2 = path / "tokenizer.model"
 
 
 
1180
  # Use `.parent` instead of /.. to handle the symlink case better.
1181
- path3 = path.parent / "tokenizer.model"
1182
  if path2.exists():
1183
  path = path2
1184
  elif path3.exists():
@@ -1189,7 +1235,8 @@ def load_vocab(path: Path) -> SentencePieceVocab:
1189
  "if it's in another directory, pass the directory as --vocab-dir")
1190
  added_tokens_path = path.parent / "added_tokens.json"
1191
  print(f"Loading vocab file {path}")
1192
- return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
 
1193
 
1194
 
1195
  def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
@@ -1227,6 +1274,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
1227
  parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
1228
  parser.add_argument("model", type=Path,
1229
  help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
 
1230
  args = parser.parse_args(args_in)
1231
 
1232
  vocab: Vocab
@@ -1234,7 +1282,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
1234
  model_plus = lazy_load_file(args.model)
1235
  do_dump_model(model_plus)
1236
  elif args.vocab_only:
1237
- vocab = load_vocab(args.vocab_dir or args.model)
1238
  assert args.outfile, "need --outfile if using --vocab-only"
1239
  outfile = args.outfile
1240
  OutputFile.write_vocab_only(outfile, vocab)
@@ -1248,7 +1296,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
1248
  vocab = model_plus.vocab
1249
  else:
1250
  vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
1251
- vocab = load_vocab(vocab_dir)
1252
  params = Params.load(model_plus)
1253
  model = model_plus.model
1254
  model = do_necessary_conversions(model, params)
 
1
+ #!/usr/bin/env python
2
  import argparse
3
  import concurrent.futures
4
  import copy
 
142
  @dataclass
143
  class Params:
144
  n_vocab: int
145
+ n_embd: int
146
+ n_mult: int
147
+ n_head: int
148
  n_layer: int
149
 
150
  @staticmethod
 
167
  n_head=n_embd // 128 # guessed
168
 
169
  return Params(
170
+ n_vocab = n_vocab,
171
+ n_embd = n_embd,
172
+ n_mult = 256,
173
+ n_head = n_head,
174
+ n_layer = n_layer,
175
  )
176
 
177
  @staticmethod
 
179
  config = json.load(open(config_path))
180
 
181
  n_vocab = config["vocab_size"];
182
+ n_embd = config["hidden_size"];
183
+ n_head = config["num_attention_heads"];
184
  n_layer = config["num_hidden_layers"];
185
+ n_ff = config["intermediate_size"];
186
 
187
  n_mult = find_n_mult(n_ff, n_embd);
188
 
189
  return Params(
190
+ n_vocab = n_vocab,
191
+ n_embd = n_embd,
192
+ n_mult = n_mult,
193
+ n_head = n_head,
194
+ n_layer = n_layer,
195
+ )
196
+
197
+ # LLaMA v2 70B params.json
198
+ # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
199
+ @staticmethod
200
+ def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
201
+ config = json.load(open(config_path))
202
+
203
+ n_vocab = config["vocab_size"];
204
+ n_embd = config["dim"];
205
+ n_head = config["n_heads"];
206
+ n_layer = config["n_layers"];
207
+ n_mult = config["multiple_of"];
208
+
209
+ if n_vocab == -1:
210
+ n_vocab = model["tok_embeddings.weight"].shape[0]
211
+
212
+ return Params(
213
+ n_vocab = n_vocab,
214
+ n_embd = n_embd,
215
+ n_mult = n_mult,
216
+ n_head = n_head,
217
+ n_layer = n_layer,
218
  )
219
 
220
  @staticmethod
221
  def load(model_plus: 'ModelPlus') -> 'Params':
222
+ hf_config_path = model_plus.paths[0].parent / "config.json"
223
  orig_config_path = model_plus.paths[0].parent / "params.json"
 
224
 
225
+ if hf_config_path.exists():
226
+ params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
227
+ elif orig_config_path.exists():
228
+ params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
229
  else:
230
  params = Params.guessed(model_plus.model)
231
 
 
234
 
235
 
236
  class SentencePieceVocab:
237
+ def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path], vocabtype: Optional[str]) -> None:
238
+ self.vocabtype = vocabtype
239
+ if self.vocabtype == "bpe":
240
+ self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read())
241
+ else:
242
+ self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
243
  added_tokens: Dict[str, int]
244
  if fname_added_tokens is not None:
245
  added_tokens = json.load(open(fname_added_tokens))
246
  else:
247
  added_tokens = {}
248
+ if self.vocabtype == "bpe":
249
+ vocab_size: int = len(self.sentencepiece_tokenizer)
250
+ else:
251
+ vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
252
  expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
253
  actual_ids = sorted(added_tokens.values())
254
  if expected_ids != actual_ids:
 
262
 
263
  def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
264
  tokenizer = self.sentencepiece_tokenizer
265
+ if self.vocabtype == "bpe":
266
+ from transformers.models.gpt2 import tokenization_gpt2
267
+ byte_encoder = tokenization_gpt2.bytes_to_unicode()
268
+ byte_decoder = {v: k for k, v in byte_encoder.items()}
269
+ for i, item in enumerate(tokenizer):
270
  text: bytes
271
+ text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y] for y in item]])
272
+ score: float = -i
 
 
 
 
 
 
 
 
 
 
 
273
  yield text, score
274
+ else:
275
+ for i in range(tokenizer.vocab_size()):
276
+ text: bytes
277
+ if tokenizer.is_unknown(i):
278
+ text = " \u2047 ".encode("utf-8")
279
+ elif tokenizer.is_control(i):
280
+ text = b""
281
+ elif tokenizer.is_byte(i):
282
+ piece = tokenizer.id_to_piece(i)
283
+ if len(piece) != 6:
284
+ raise Exception(f"Invalid token: {piece}")
285
+ byte_value = int(piece[3:-1], 16)
286
+ text = struct.pack("B", byte_value)
287
+ else:
288
+ text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
289
+ score: float = tokenizer.get_score(i)
290
+ yield text, score
291
 
292
  def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
293
  for text in self.added_tokens_list:
 
1078
  @staticmethod
1079
  def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
1080
  of = OutputFile(fname_out)
1081
+ params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, n_head=1, n_layer=0)
 
1082
  of = OutputFile(fname_out)
1083
  of.write_file_header(params, file_type=GGMLFileType.AllF32)
1084
  of.write_vocab(vocab)
 
1213
  return {name: model[name] for name in TENSORS_LIST if name in model}
1214
 
1215
 
1216
+ def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab:
1217
+ print(f"vocabtype: {vocabtype}")
1218
  # Be extra-friendly and accept either a file or a directory. Also, if it's
1219
  # a directory, it might be the model directory, and tokenizer.model might
1220
  # be in the parent of that.
1221
  if path.is_dir():
1222
+ vocab_file = "tokenizer.model"
1223
+ if vocabtype == 'bpe':
1224
+ vocab_file = "vocab.json"
1225
+ path2 = path / vocab_file
1226
  # Use `.parent` instead of /.. to handle the symlink case better.
1227
+ path3 = path.parent / vocab_file
1228
  if path2.exists():
1229
  path = path2
1230
  elif path3.exists():
 
1235
  "if it's in another directory, pass the directory as --vocab-dir")
1236
  added_tokens_path = path.parent / "added_tokens.json"
1237
  print(f"Loading vocab file {path}")
1238
+ return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None,
1239
+ vocabtype)
1240
 
1241
 
1242
  def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
 
1274
  parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
1275
  parser.add_argument("model", type=Path,
1276
  help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
1277
+ parser.add_argument("--vocabtype", default='spm', choices=["spm", "bpe"], help="vocab format (default: spm)")
1278
  args = parser.parse_args(args_in)
1279
 
1280
  vocab: Vocab
 
1282
  model_plus = lazy_load_file(args.model)
1283
  do_dump_model(model_plus)
1284
  elif args.vocab_only:
1285
+ vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
1286
  assert args.outfile, "need --outfile if using --vocab-only"
1287
  outfile = args.outfile
1288
  OutputFile.write_vocab_only(outfile, vocab)
 
1296
  vocab = model_plus.vocab
1297
  else:
1298
  vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
1299
+ vocab = load_vocab(vocab_dir, args.vocabtype)
1300
  params = Params.load(model_plus)
1301
  model = model_plus.model
1302
  model = do_necessary_conversions(model, params)
cudart64_110.dll CHANGED
Binary files a/cudart64_110.dll and b/cudart64_110.dll differ
 
examples/CMakeLists.txt CHANGED
@@ -13,6 +13,8 @@ set(TARGET common)
13
  add_library(${TARGET} OBJECT
14
  common.h
15
  common.cpp
 
 
16
  )
17
 
18
  if (BUILD_SHARED_LIBS)
 
13
  add_library(${TARGET} OBJECT
14
  common.h
15
  common.cpp
16
+ grammar-parser.h
17
+ grammar-parser.cpp
18
  )
19
 
20
  if (BUILD_SHARED_LIBS)
examples/Miku.sh CHANGED
@@ -2,21 +2,21 @@
2
  set -e
3
 
4
  AI_NAME="${AI_NAME:-Miku}"
5
- MODEL="${MODEL:-./models/gpt4all-7B/gpt4all-lora-unfiltered-quantized.bin}"
6
  USER_NAME="${USER_NAME:-Anon}"
7
 
8
  # Uncomment and adjust to the number of CPU cores you want to use.
9
  #N_THREAD="${N_THREAD:-4}"
 
10
  N_PREDICTS="${N_PREDICTS:-4096}"
11
 
12
  GEN_OPTIONS=(--batch_size 1024
13
- --ctx_size 2048
14
  --keep -1
15
  --repeat_last_n 256
16
  --repeat_penalty 1.17647
17
- --temp 0.7
18
- --top_k 40
19
- --top_p 0.5)
20
 
21
  if [ -n "$N_THREAD" ]; then
22
  GEN_OPTIONS+=(--threads "$N_THREAD")
@@ -24,16 +24,17 @@ fi
24
 
25
  ./main "${GEN_OPTIONS[@]}" \
26
  --model "$MODEL" \
 
 
27
  --n_predict "$N_PREDICTS" \
28
  --color --interactive \
29
  --reverse-prompt "${USER_NAME}:" \
30
- --prompt "
31
- This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the user's computer.
32
  ${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next.
33
  ${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct, she will ask the user for help.
34
  ${AI_NAME} is a very helpful AI and will help the user with anything they need. She is also very friendly and will try to make the user feel better if they are sad.
35
  ${AI_NAME} is also very curious and will ask the user a lot of questions about themselves and their life. She will also try to make the user like her.
36
- The conversation is only between ${USER_NAME} and ${AI_NAME}
37
  The conversation is only through text, so ${AI_NAME} can't see ${USER_NAME}'s face or hear his voice.
38
  ${AI_NAME} can only communicate through text, so she can't send images or videos.
39
 
 
2
  set -e
3
 
4
  AI_NAME="${AI_NAME:-Miku}"
5
+ MODEL="${MODEL:-./models/llama-2-7b-chat.ggmlv3.q4_K_M.bin}"
6
  USER_NAME="${USER_NAME:-Anon}"
7
 
8
  # Uncomment and adjust to the number of CPU cores you want to use.
9
  #N_THREAD="${N_THREAD:-4}"
10
+ CTX_SIZE="${CTX_SIZE:-4096}"
11
  N_PREDICTS="${N_PREDICTS:-4096}"
12
 
13
  GEN_OPTIONS=(--batch_size 1024
14
+ --ctx_size "$CTX_SIZE"
15
  --keep -1
16
  --repeat_last_n 256
17
  --repeat_penalty 1.17647
18
+ --temp 0.6
19
+ --mirostat 2)
 
20
 
21
  if [ -n "$N_THREAD" ]; then
22
  GEN_OPTIONS+=(--threads "$N_THREAD")
 
24
 
25
  ./main "${GEN_OPTIONS[@]}" \
26
  --model "$MODEL" \
27
+ --in-prefix " " \
28
+ --in-suffix "${AI_NAME}:" \
29
  --n_predict "$N_PREDICTS" \
30
  --color --interactive \
31
  --reverse-prompt "${USER_NAME}:" \
32
+ --prompt "This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the user's computer.
 
33
  ${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next.
34
  ${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct, she will ask the user for help.
35
  ${AI_NAME} is a very helpful AI and will help the user with anything they need. She is also very friendly and will try to make the user feel better if they are sad.
36
  ${AI_NAME} is also very curious and will ask the user a lot of questions about themselves and their life. She will also try to make the user like her.
37
+ The conversation is only between ${USER_NAME} and ${AI_NAME}.
38
  The conversation is only through text, so ${AI_NAME} can't see ${USER_NAME}'s face or hear his voice.
39
  ${AI_NAME} can only communicate through text, so she can't send images or videos.
40
 
examples/baby-llama/CMakeLists.txt CHANGED
@@ -1,4 +1,5 @@
1
  set(TARGET baby-llama)
2
  add_executable(${TARGET} baby-llama.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
 
1
  set(TARGET baby-llama)
2
  add_executable(${TARGET} baby-llama.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
examples/baby-llama/baby-llama.cpp CHANGED
@@ -8,6 +8,12 @@
8
  #pragma warning(disable: 4244 4267) // possible loss of data
9
  #endif
10
 
 
 
 
 
 
 
11
  float frand() {
12
  return (float)rand()/(float)RAND_MAX;
13
  }
@@ -562,7 +568,7 @@ struct ggml_tensor * forward(
562
  // norm
563
  {
564
  // cur shape [n_embd,N,1,1]
565
- cur = ggml_rms_norm(ctx0, inpL);
566
 
567
  // cur = attention_norm*cur
568
  cur = ggml_mul(ctx0,
@@ -685,7 +691,7 @@ struct ggml_tensor * forward(
685
  // norm
686
  {
687
  // cur shape [n_embd,N,1,1]
688
- cur = ggml_rms_norm(ctx0, inpFF);
689
 
690
  // cur = ffn_norm*cur
691
  // cur shape [n_embd,N,1,1]
@@ -729,7 +735,7 @@ struct ggml_tensor * forward(
729
  {
730
 
731
  // inpL shape [n_embd,N,1,1]
732
- inpL = ggml_rms_norm(ctx0, inpL);
733
 
734
  // inpL = norm*inpL
735
  // inpL shape [n_embd,N,1,1]
@@ -817,7 +823,7 @@ struct ggml_tensor * forward_batch(
817
  // norm
818
  {
819
  // cur shape [n_embd,N*n_batch,1,1]
820
- cur = ggml_rms_norm(ctx0, inpL);
821
  assert_shape_2d(cur, n_embd, N*n_batch);
822
 
823
  // cur = attention_norm*cur
@@ -981,7 +987,7 @@ struct ggml_tensor * forward_batch(
981
  // norm
982
  {
983
  // cur shape [n_embd,N*n_batch,1,1]
984
- cur = ggml_rms_norm(ctx0, inpFF);
985
  assert_shape_2d(cur, n_embd, N*n_batch);
986
 
987
  // cur = ffn_norm*cur
@@ -1034,7 +1040,7 @@ struct ggml_tensor * forward_batch(
1034
  {
1035
 
1036
  // inpL shape [n_embd,N*n_batch,1,1]
1037
- inpL = ggml_rms_norm(ctx0, inpL);
1038
  assert_shape_2d(inpL, n_embd, N*n_batch);
1039
 
1040
  // inpL = norm*inpL
@@ -1104,7 +1110,7 @@ struct ggml_tensor * forward_lora(
1104
  // norm
1105
  {
1106
  // cur shape [n_embd,N,1,1]
1107
- cur = ggml_rms_norm(ctx0, inpL);
1108
 
1109
  // cur = attention_norm*cur
1110
  cur = ggml_mul(ctx0,
@@ -1251,7 +1257,7 @@ struct ggml_tensor * forward_lora(
1251
  // norm
1252
  {
1253
  // cur shape [n_embd,N,1,1]
1254
- cur = ggml_rms_norm(ctx0, inpFF);
1255
 
1256
  // cur = ffn_norm*cur
1257
  // cur shape [n_embd,N,1,1]
@@ -1295,7 +1301,7 @@ struct ggml_tensor * forward_lora(
1295
  {
1296
 
1297
  // inpL shape [n_embd,N,1,1]
1298
- inpL = ggml_rms_norm(ctx0, inpL);
1299
 
1300
  // inpL = norm*inpL
1301
  // inpL shape [n_embd,N,1,1]
 
8
  #pragma warning(disable: 4244 4267) // possible loss of data
9
  #endif
10
 
11
+ #ifdef LLAMA_DEFAULT_RMS_EPS
12
+ static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
13
+ #else
14
+ static const float rms_norm_eps = 5e-6f;
15
+ #endif
16
+
17
  float frand() {
18
  return (float)rand()/(float)RAND_MAX;
19
  }
 
568
  // norm
569
  {
570
  // cur shape [n_embd,N,1,1]
571
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
572
 
573
  // cur = attention_norm*cur
574
  cur = ggml_mul(ctx0,
 
691
  // norm
692
  {
693
  // cur shape [n_embd,N,1,1]
694
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
695
 
696
  // cur = ffn_norm*cur
697
  // cur shape [n_embd,N,1,1]
 
735
  {
736
 
737
  // inpL shape [n_embd,N,1,1]
738
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
739
 
740
  // inpL = norm*inpL
741
  // inpL shape [n_embd,N,1,1]
 
823
  // norm
824
  {
825
  // cur shape [n_embd,N*n_batch,1,1]
826
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
827
  assert_shape_2d(cur, n_embd, N*n_batch);
828
 
829
  // cur = attention_norm*cur
 
987
  // norm
988
  {
989
  // cur shape [n_embd,N*n_batch,1,1]
990
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
991
  assert_shape_2d(cur, n_embd, N*n_batch);
992
 
993
  // cur = ffn_norm*cur
 
1040
  {
1041
 
1042
  // inpL shape [n_embd,N*n_batch,1,1]
1043
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
1044
  assert_shape_2d(inpL, n_embd, N*n_batch);
1045
 
1046
  // inpL = norm*inpL
 
1110
  // norm
1111
  {
1112
  // cur shape [n_embd,N,1,1]
1113
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
1114
 
1115
  // cur = attention_norm*cur
1116
  cur = ggml_mul(ctx0,
 
1257
  // norm
1258
  {
1259
  // cur shape [n_embd,N,1,1]
1260
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
1261
 
1262
  // cur = ffn_norm*cur
1263
  // cur shape [n_embd,N,1,1]
 
1301
  {
1302
 
1303
  // inpL shape [n_embd,N,1,1]
1304
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
1305
 
1306
  // inpL = norm*inpL
1307
  // inpL shape [n_embd,N,1,1]
examples/benchmark/CMakeLists.txt CHANGED
@@ -1,5 +1,6 @@
1
  set(TARGET benchmark)
2
  add_executable(${TARGET} benchmark-matmult.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
5
  if(TARGET BUILD_INFO)
 
1
  set(TARGET benchmark)
2
  add_executable(${TARGET} benchmark-matmult.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
6
  if(TARGET BUILD_INFO)
examples/common.cpp CHANGED
@@ -117,6 +117,9 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
117
  break;
118
  }
119
  params.n_threads = std::stoi(argv[i]);
 
 
 
120
  } else if (arg == "-p" || arg == "--prompt") {
121
  if (++i >= argc) {
122
  invalid_param = true;
@@ -168,6 +171,30 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
168
  break;
169
  }
170
  params.n_ctx = std::stoi(argv[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  } else if (arg == "--memory-f32") {
172
  params.memory_f16 = false;
173
  } else if (arg == "--top-p") {
@@ -248,12 +275,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
248
  break;
249
  }
250
  params.cfg_scale = std::stof(argv[i]);
251
- } else if (arg == "--cfg-smooth-factor") {
252
- if (++i >= argc) {
253
- invalid_param = true;
254
- break;
255
- }
256
- params.cfg_smooth_factor = std::stof(argv[i]);
257
  } else if (arg == "-b" || arg == "--batch-size") {
258
  if (++i >= argc) {
259
  invalid_param = true;
@@ -267,6 +288,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
267
  break;
268
  }
269
  params.n_keep = std::stoi(argv[i]);
 
 
 
 
 
 
270
  } else if (arg == "-m" || arg == "--model") {
271
  if (++i >= argc) {
272
  invalid_param = true;
@@ -285,6 +312,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
285
  break;
286
  }
287
  params.lora_adapter = argv[i];
 
288
  } else if (arg == "--lora-base") {
289
  if (++i >= argc) {
290
  invalid_param = true;
@@ -374,6 +402,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
374
  params.antiprompt.push_back(argv[i]);
375
  } else if (arg == "--perplexity") {
376
  params.perplexity = true;
 
 
377
  } else if (arg == "--ignore-eos") {
378
  params.logit_bias[llama_token_eos()] = -INFINITY;
379
  } else if (arg == "--no-penalize-nl") {
@@ -402,6 +432,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
402
  exit(0);
403
  } else if (arg == "--random-prompt") {
404
  params.random_prompt = true;
 
 
405
  } else if (arg == "--in-prefix") {
406
  if (++i >= argc) {
407
  invalid_param = true;
@@ -414,6 +446,28 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
414
  break;
415
  }
416
  params.input_suffix = argv[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417
  } else {
418
  fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
419
  gpt_print_usage(argc, argv, default_params);
@@ -443,88 +497,96 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
443
  }
444
 
445
  void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
446
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
447
- fprintf(stderr, "\n");
448
- fprintf(stderr, "options:\n");
449
- fprintf(stderr, " -h, --help show this help message and exit\n");
450
- fprintf(stderr, " -i, --interactive run in interactive mode\n");
451
- fprintf(stderr, " --interactive-first run in interactive mode and wait for input right away\n");
452
- fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n");
453
- fprintf(stderr, " --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
454
- fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n");
455
- fprintf(stderr, " halt generation at PROMPT, return control in interactive mode\n");
456
- fprintf(stderr, " (can be specified more than once for multiple prompts).\n");
457
- fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n");
458
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
459
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
460
- fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
461
- fprintf(stderr, " prompt to start generation with (default: empty)\n");
462
- fprintf(stderr, " -e process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
463
- fprintf(stderr, " --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
464
- fprintf(stderr, " --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
465
- fprintf(stderr, " not supported with --interactive or other interactive options\n");
466
- fprintf(stderr, " --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
467
- fprintf(stderr, " --random-prompt start with a randomized prompt.\n");
468
- fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
469
- fprintf(stderr, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
470
- fprintf(stderr, " -f FNAME, --file FNAME\n");
471
- fprintf(stderr, " prompt file to start generation.\n");
472
- fprintf(stderr, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
473
- fprintf(stderr, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
474
- fprintf(stderr, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
475
- fprintf(stderr, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
476
- fprintf(stderr, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
477
- fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
478
- fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
479
- fprintf(stderr, " --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
480
- fprintf(stderr, " --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
481
- fprintf(stderr, " --mirostat N use Mirostat sampling.\n");
482
- fprintf(stderr, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
483
- fprintf(stderr, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
484
- fprintf(stderr, " --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
485
- fprintf(stderr, " --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
486
- fprintf(stderr, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
487
- fprintf(stderr, " modifies the likelihood of token appearing in the completion,\n");
488
- fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
489
- fprintf(stderr, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
490
- fprintf(stderr, " --cfg-negative-prompt PROMPT \n");
491
- fprintf(stderr, " negative prompt to use for guidance. (default: empty)\n");
492
- fprintf(stderr, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
493
- fprintf(stderr, " --cfg-smooth-factor N smooth factor between old and new logits (default: %f, 1.0 = no smoothing)\n", params.cfg_smooth_factor);
494
- fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
495
- fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
496
- fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
497
- fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
498
- fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
499
- fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);
500
- fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
501
- fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
502
- fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
 
 
 
 
 
 
 
 
503
  if (llama_mlock_supported()) {
504
- fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
505
  }
506
  if (llama_mmap_supported()) {
507
- fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
508
  }
509
- fprintf(stderr, " --numa attempt optimizations that help on some NUMA systems\n");
510
- fprintf(stderr, " if run without this previously, it is recommended to drop the system page cache before using this\n");
511
- fprintf(stderr, " see https://github.com/ggerganov/llama.cpp/issues/1437\n");
512
  #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
513
- fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
514
- fprintf(stderr, " number of layers to store in VRAM\n");
515
- fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
516
- fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
517
- fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" );
518
- fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n" );
519
  #endif
520
- fprintf(stderr, " --mtest compute maximum memory usage\n");
521
- fprintf(stderr, " --export export the computation graph to 'llama.ggml'\n");
522
- fprintf(stderr, " --verbose-prompt print prompt before generation\n");
523
- fprintf(stderr, " --lora FNAME apply LoRA adapter\n");
524
- fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
525
- fprintf(stderr, " -m FNAME, --model FNAME\n");
526
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
527
- fprintf(stderr, "\n");
528
  }
529
 
530
  std::string gpt_random_prompt(std::mt19937 & rng) {
@@ -560,18 +622,22 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
560
  struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
561
  auto lparams = llama_context_default_params();
562
 
563
- lparams.n_ctx = params.n_ctx;
564
- lparams.n_batch = params.n_batch;
565
- lparams.n_gpu_layers = params.n_gpu_layers;
566
- lparams.main_gpu = params.main_gpu;
567
- memcpy(lparams.tensor_split, params.tensor_split, LLAMA_MAX_DEVICES*sizeof(float));
568
- lparams.low_vram = params.low_vram;
569
- lparams.seed = params.seed;
570
- lparams.f16_kv = params.memory_f16;
571
- lparams.use_mmap = params.use_mmap;
572
- lparams.use_mlock = params.use_mlock;
573
- lparams.logits_all = params.perplexity;
574
- lparams.embedding = params.embedding;
 
 
 
 
575
 
576
  return lparams;
577
  }
 
117
  break;
118
  }
119
  params.n_threads = std::stoi(argv[i]);
120
+ if (params.n_threads <= 0) {
121
+ params.n_threads = std::thread::hardware_concurrency();
122
+ }
123
  } else if (arg == "-p" || arg == "--prompt") {
124
  if (++i >= argc) {
125
  invalid_param = true;
 
171
  break;
172
  }
173
  params.n_ctx = std::stoi(argv[i]);
174
+ } else if (arg == "-gqa" || arg == "--gqa") {
175
+ if (++i >= argc) {
176
+ invalid_param = true;
177
+ break;
178
+ }
179
+ params.n_gqa = std::stoi(argv[i]);
180
+ } else if (arg == "-eps" || arg == "--rms-norm-eps") {
181
+ if (++i >= argc) {
182
+ invalid_param = true;
183
+ break;
184
+ }
185
+ params.rms_norm_eps = std::stof(argv[i]);
186
+ } else if (arg == "--rope-freq-base") {
187
+ if (++i >= argc) {
188
+ invalid_param = true;
189
+ break;
190
+ }
191
+ params.rope_freq_base = std::stof(argv[i]);
192
+ } else if (arg == "--rope-freq-scale") {
193
+ if (++i >= argc) {
194
+ invalid_param = true;
195
+ break;
196
+ }
197
+ params.rope_freq_scale = std::stof(argv[i]);
198
  } else if (arg == "--memory-f32") {
199
  params.memory_f16 = false;
200
  } else if (arg == "--top-p") {
 
275
  break;
276
  }
277
  params.cfg_scale = std::stof(argv[i]);
 
 
 
 
 
 
278
  } else if (arg == "-b" || arg == "--batch-size") {
279
  if (++i >= argc) {
280
  invalid_param = true;
 
288
  break;
289
  }
290
  params.n_keep = std::stoi(argv[i]);
291
+ } else if (arg == "--chunks") {
292
+ if (++i >= argc) {
293
+ invalid_param = true;
294
+ break;
295
+ }
296
+ params.n_chunks = std::stoi(argv[i]);
297
  } else if (arg == "-m" || arg == "--model") {
298
  if (++i >= argc) {
299
  invalid_param = true;
 
312
  break;
313
  }
314
  params.lora_adapter = argv[i];
315
+ params.use_mmap = false;
316
  } else if (arg == "--lora-base") {
317
  if (++i >= argc) {
318
  invalid_param = true;
 
402
  params.antiprompt.push_back(argv[i]);
403
  } else if (arg == "--perplexity") {
404
  params.perplexity = true;
405
+ } else if (arg == "--perplexity-lines") {
406
+ params.perplexity_lines = true;
407
  } else if (arg == "--ignore-eos") {
408
  params.logit_bias[llama_token_eos()] = -INFINITY;
409
  } else if (arg == "--no-penalize-nl") {
 
432
  exit(0);
433
  } else if (arg == "--random-prompt") {
434
  params.random_prompt = true;
435
+ } else if (arg == "--in-prefix-bos") {
436
+ params.input_prefix_bos = true;
437
  } else if (arg == "--in-prefix") {
438
  if (++i >= argc) {
439
  invalid_param = true;
 
446
  break;
447
  }
448
  params.input_suffix = argv[i];
449
+ } else if (arg == "--grammar") {
450
+ if (++i >= argc) {
451
+ invalid_param = true;
452
+ break;
453
+ }
454
+ params.grammar = argv[i];
455
+ } else if (arg == "--grammar-file") {
456
+ if (++i >= argc) {
457
+ invalid_param = true;
458
+ break;
459
+ }
460
+ std::ifstream file(argv[i]);
461
+ if (!file) {
462
+ fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
463
+ invalid_param = true;
464
+ break;
465
+ }
466
+ std::copy(
467
+ std::istreambuf_iterator<char>(file),
468
+ std::istreambuf_iterator<char>(),
469
+ std::back_inserter(params.grammar)
470
+ );
471
  } else {
472
  fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
473
  gpt_print_usage(argc, argv, default_params);
 
497
  }
498
 
499
  void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
500
+ fprintf(stdout, "usage: %s [options]\n", argv[0]);
501
+ fprintf(stdout, "\n");
502
+ fprintf(stdout, "options:\n");
503
+ fprintf(stdout, " -h, --help show this help message and exit\n");
504
+ fprintf(stdout, " -i, --interactive run in interactive mode\n");
505
+ fprintf(stdout, " --interactive-first run in interactive mode and wait for input right away\n");
506
+ fprintf(stdout, " -ins, --instruct run in instruction mode (use with Alpaca models)\n");
507
+ fprintf(stdout, " --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
508
+ fprintf(stdout, " -r PROMPT, --reverse-prompt PROMPT\n");
509
+ fprintf(stdout, " halt generation at PROMPT, return control in interactive mode\n");
510
+ fprintf(stdout, " (can be specified more than once for multiple prompts).\n");
511
+ fprintf(stdout, " --color colorise output to distinguish prompt and user input from generations\n");
512
+ fprintf(stdout, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
513
+ fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
514
+ fprintf(stdout, " -p PROMPT, --prompt PROMPT\n");
515
+ fprintf(stdout, " prompt to start generation with (default: empty)\n");
516
+ fprintf(stdout, " -e process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
517
+ fprintf(stdout, " --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
518
+ fprintf(stdout, " --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
519
+ fprintf(stdout, " not supported with --interactive or other interactive options\n");
520
+ fprintf(stdout, " --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
521
+ fprintf(stdout, " --random-prompt start with a randomized prompt.\n");
522
+ fprintf(stdout, " --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
523
+ fprintf(stdout, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
524
+ fprintf(stdout, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
525
+ fprintf(stdout, " -f FNAME, --file FNAME\n");
526
+ fprintf(stdout, " prompt file to start generation.\n");
527
+ fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
528
+ fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
529
+ fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
530
+ fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
531
+ fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
532
+ fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
533
+ fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
534
+ fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
535
+ fprintf(stdout, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
536
+ fprintf(stdout, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
537
+ fprintf(stdout, " --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
538
+ fprintf(stdout, " --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
539
+ fprintf(stdout, " --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
540
+ fprintf(stdout, " --mirostat N use Mirostat sampling.\n");
541
+ fprintf(stdout, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
542
+ fprintf(stdout, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
543
+ fprintf(stdout, " --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
544
+ fprintf(stdout, " --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
545
+ fprintf(stdout, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
546
+ fprintf(stdout, " modifies the likelihood of token appearing in the completion,\n");
547
+ fprintf(stdout, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
548
+ fprintf(stdout, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
549
+ fprintf(stdout, " --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
550
+ fprintf(stdout, " --grammar-file FNAME file to read grammar from\n");
551
+ fprintf(stdout, " --cfg-negative-prompt PROMPT \n");
552
+ fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n");
553
+ fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
554
+ fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
555
+ fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
556
+ fprintf(stdout, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
557
+ fprintf(stdout, " --no-penalize-nl do not penalize newline token\n");
558
+ fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
559
+ fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n");
560
+ fprintf(stdout, " --temp N temperature (default: %.1f)\n", (double)params.temp);
561
+ fprintf(stdout, " --perplexity compute perplexity over each ctx window of the prompt\n");
562
+ fprintf(stdout, " --perplexity-lines compute perplexity over each line of the prompt\n");
563
+ fprintf(stdout, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
564
+ fprintf(stdout, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
565
  if (llama_mlock_supported()) {
566
+ fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
567
  }
568
  if (llama_mmap_supported()) {
569
+ fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
570
  }
571
+ fprintf(stdout, " --numa attempt optimizations that help on some NUMA systems\n");
572
+ fprintf(stdout, " if run without this previously, it is recommended to drop the system page cache before using this\n");
573
+ fprintf(stdout, " see https://github.com/ggerganov/llama.cpp/issues/1437\n");
574
  #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
575
+ fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
576
+ fprintf(stdout, " number of layers to store in VRAM\n");
577
+ fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n");
578
+ fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
579
+ fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" );
580
+ fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n" );
581
  #endif
582
+ fprintf(stdout, " --mtest compute maximum memory usage\n");
583
+ fprintf(stdout, " --export export the computation graph to 'llama.ggml'\n");
584
+ fprintf(stdout, " --verbose-prompt print prompt before generation\n");
585
+ fprintf(stdout, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
586
+ fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
587
+ fprintf(stdout, " -m FNAME, --model FNAME\n");
588
+ fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
589
+ fprintf(stdout, "\n");
590
  }
591
 
592
  std::string gpt_random_prompt(std::mt19937 & rng) {
 
622
  struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
623
  auto lparams = llama_context_default_params();
624
 
625
+ lparams.n_ctx = params.n_ctx;
626
+ lparams.n_batch = params.n_batch;
627
+ lparams.n_gqa = params.n_gqa;
628
+ lparams.rms_norm_eps = params.rms_norm_eps;
629
+ lparams.n_gpu_layers = params.n_gpu_layers;
630
+ lparams.main_gpu = params.main_gpu;
631
+ lparams.tensor_split = params.tensor_split;
632
+ lparams.low_vram = params.low_vram;
633
+ lparams.seed = params.seed;
634
+ lparams.f16_kv = params.memory_f16;
635
+ lparams.use_mmap = params.use_mmap;
636
+ lparams.use_mlock = params.use_mlock;
637
+ lparams.logits_all = params.perplexity;
638
+ lparams.embedding = params.embedding;
639
+ lparams.rope_freq_base = params.rope_freq_base;
640
+ lparams.rope_freq_scale = params.rope_freq_scale;
641
 
642
  return lparams;
643
  }
examples/common.h CHANGED
@@ -22,16 +22,21 @@
22
  int32_t get_num_physical_cores();
23
 
24
  struct gpt_params {
25
- uint32_t seed = -1; // RNG seed
26
  int32_t n_threads = get_num_physical_cores();
27
- int32_t n_predict = -1; // new tokens to predict
28
- int32_t n_ctx = 512; // context size
29
- int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
30
- int32_t n_keep = 0; // number of tokens to keep from initial prompt
31
- int32_t n_gpu_layers = 0; // number of layers to store in VRAM
32
- int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
33
- float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
34
- int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
 
 
 
 
 
35
 
36
  // sampling parameters
37
  std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
@@ -44,7 +49,7 @@ struct gpt_params {
44
  int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
45
  float frequency_penalty = 0.00f; // 0.0 = disabled
46
  float presence_penalty = 0.00f; // 0.0 = disabled
47
- int mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
48
  float mirostat_tau = 5.00f; // target entropy
49
  float mirostat_eta = 0.10f; // learning rate
50
 
@@ -52,7 +57,6 @@ struct gpt_params {
52
  // https://arxiv.org/abs/2306.17806
53
  std::string cfg_negative_prompt; // string to help guidance
54
  float cfg_scale = 1.f; // How strong is guidance
55
- float cfg_smooth_factor = 1.f; // Smooth factor between old and new logits
56
 
57
  std::string model = "models/7B/ggml-model.bin"; // model path
58
  std::string model_alias = "unknown"; // model alias
@@ -60,6 +64,7 @@ struct gpt_params {
60
  std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
61
  std::string input_prefix = ""; // string to prefix user inputs with
62
  std::string input_suffix = ""; // string to suffix user inputs with
 
63
  std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
64
 
65
  std::string lora_adapter = ""; // lora adapter path
@@ -77,9 +82,11 @@ struct gpt_params {
77
  bool interactive_first = false; // wait for user input immediately
78
  bool multiline_input = false; // reverse the usage of `\`
79
 
 
80
  bool instruct = false; // instruction mode (used for Alpaca models)
81
  bool penalize_nl = true; // consider newlines as a repeatable token
82
  bool perplexity = false; // compute perplexity over the prompt
 
83
  bool use_mmap = true; // use mmap for faster loads
84
  bool use_mlock = false; // use mlock to keep model in memory
85
  bool mem_test = false; // compute maximum memory usage
 
22
  int32_t get_num_physical_cores();
23
 
24
  struct gpt_params {
25
+ uint32_t seed = -1; // RNG seed
26
  int32_t n_threads = get_num_physical_cores();
27
+ int32_t n_predict = -1; // new tokens to predict
28
+ int32_t n_ctx = 512; // context size
29
+ int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
30
+ int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
31
+ int32_t n_keep = 0; // number of tokens to keep from initial prompt
32
+ int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
33
+ int32_t n_gpu_layers = 0; // number of layers to store in VRAM
34
+ int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
35
+ float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
36
+ int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
37
+ float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
38
+ float rope_freq_base = 10000.0f; // RoPE base frequency
39
+ float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
40
 
41
  // sampling parameters
42
  std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
 
49
  int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
50
  float frequency_penalty = 0.00f; // 0.0 = disabled
51
  float presence_penalty = 0.00f; // 0.0 = disabled
52
+ int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
53
  float mirostat_tau = 5.00f; // target entropy
54
  float mirostat_eta = 0.10f; // learning rate
55
 
 
57
  // https://arxiv.org/abs/2306.17806
58
  std::string cfg_negative_prompt; // string to help guidance
59
  float cfg_scale = 1.f; // How strong is guidance
 
60
 
61
  std::string model = "models/7B/ggml-model.bin"; // model path
62
  std::string model_alias = "unknown"; // model alias
 
64
  std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
65
  std::string input_prefix = ""; // string to prefix user inputs with
66
  std::string input_suffix = ""; // string to suffix user inputs with
67
+ std::string grammar = ""; // optional BNF-like grammar to constrain sampling
68
  std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
69
 
70
  std::string lora_adapter = ""; // lora adapter path
 
82
  bool interactive_first = false; // wait for user input immediately
83
  bool multiline_input = false; // reverse the usage of `\`
84
 
85
+ bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
86
  bool instruct = false; // instruction mode (used for Alpaca models)
87
  bool penalize_nl = true; // consider newlines as a repeatable token
88
  bool perplexity = false; // compute perplexity over the prompt
89
+ bool perplexity_lines = false; // compute perplexity over each line of the prompt
90
  bool use_mmap = true; // use mmap for faster loads
91
  bool use_mlock = false; // use mlock to keep model in memory
92
  bool mem_test = false; // compute maximum memory usage
examples/embd-input/CMakeLists.txt CHANGED
@@ -1,5 +1,6 @@
1
  set(TARGET embdinput)
2
  add_library(${TARGET} embd-input-lib.cpp embd-input.h)
 
3
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
5
  if(TARGET BUILD_INFO)
@@ -8,6 +9,7 @@ endif()
8
 
9
  set(TARGET embd-input-test)
10
  add_executable(${TARGET} embd-input-test.cpp)
 
11
  target_link_libraries(${TARGET} PRIVATE common llama embdinput ${CMAKE_THREAD_LIBS_INIT})
12
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
13
  if(TARGET BUILD_INFO)
 
1
  set(TARGET embdinput)
2
  add_library(${TARGET} embd-input-lib.cpp embd-input.h)
3
+ install(TARGETS ${TARGET} LIBRARY)
4
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
6
  if(TARGET BUILD_INFO)
 
9
 
10
  set(TARGET embd-input-test)
11
  add_executable(${TARGET} embd-input-test.cpp)
12
+ install(TARGETS ${TARGET} RUNTIME)
13
  target_link_libraries(${TARGET} PRIVATE common llama embdinput ${CMAKE_THREAD_LIBS_INIT})
14
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
15
  if(TARGET BUILD_INFO)
examples/embd-input/README.md CHANGED
@@ -17,7 +17,7 @@ make
17
  import torch
18
 
19
  bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
20
- pth_path = "./examples/embd_input/llava_projection.pth"
21
 
22
  dic = torch.load(bin_path)
23
  used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
 
17
  import torch
18
 
19
  bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
20
+ pth_path = "./examples/embd-input/llava_projection.pth"
21
 
22
  dic = torch.load(bin_path)
23
  used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
examples/embd-input/llava.py CHANGED
@@ -59,7 +59,7 @@ if __name__=="__main__":
59
  # Also here can use pytorch_model-00003-of-00003.bin directly.
60
  a.load_projection(os.path.join(
61
  os.path.dirname(__file__) ,
62
- "llava_projetion.pth"))
63
  respose = a.chat_with_image(
64
  Image.open("./media/llama1-logo.png").convert('RGB'),
65
  "what is the text in the picture?")
 
59
  # Also here can use pytorch_model-00003-of-00003.bin directly.
60
  a.load_projection(os.path.join(
61
  os.path.dirname(__file__) ,
62
+ "llava_projection.pth"))
63
  respose = a.chat_with_image(
64
  Image.open("./media/llama1-logo.png").convert('RGB'),
65
  "what is the text in the picture?")
examples/embd-input/minigpt4.py CHANGED
@@ -64,7 +64,7 @@ class MiniGPT4(Blip2Base):
64
  self.max_txt_len = max_txt_len
65
  self.end_sym = end_sym
66
  self.model = MyModel(["main", *args])
67
- # system promt
68
  self.model.eval_string("Give the following image: <Img>ImageContent</Img>. "
69
  "You will be able to see the image once I provide it to you. Please answer my questions."
70
  "###")
 
64
  self.max_txt_len = max_txt_len
65
  self.end_sym = end_sym
66
  self.model = MyModel(["main", *args])
67
+ # system prompt
68
  self.model.eval_string("Give the following image: <Img>ImageContent</Img>. "
69
  "You will be able to see the image once I provide it to you. Please answer my questions."
70
  "###")
examples/embedding/CMakeLists.txt CHANGED
@@ -1,5 +1,6 @@
1
  set(TARGET embedding)
2
  add_executable(${TARGET} embedding.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
5
  if(TARGET BUILD_INFO)
 
1
  set(TARGET embedding)
2
  add_executable(${TARGET} embedding.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
6
  if(TARGET BUILD_INFO)
examples/grammar-parser.cpp ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "grammar-parser.h"
2
+ #include <cstdint>
3
+ #include <cwchar>
4
+ #include <string>
5
+ #include <utility>
6
+ #include <stdexcept>
7
+ #include <exception>
8
+
9
+ namespace grammar_parser {
10
+ // NOTE: assumes valid utf8 (but checks for overrun)
11
+ // copied from llama.cpp
12
+ std::pair<uint32_t, const char *> decode_utf8(const char * src) {
13
+ static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
14
+ uint8_t first_byte = static_cast<uint8_t>(*src);
15
+ uint8_t highbits = first_byte >> 4;
16
+ int len = lookup[highbits];
17
+ uint8_t mask = (1 << (8 - len)) - 1;
18
+ uint32_t value = first_byte & mask;
19
+ const char * end = src + len; // may overrun!
20
+ const char * pos = src + 1;
21
+ for ( ; pos < end && *pos; pos++) {
22
+ value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
23
+ }
24
+ return std::make_pair(value, pos);
25
+ }
26
+
27
+ uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
28
+ uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
29
+ auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
30
+ return result.first->second;
31
+ }
32
+
33
+ uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
34
+ uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
35
+ state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
36
+ return next_id;
37
+ }
38
+
39
+ void add_rule(
40
+ parse_state & state,
41
+ uint32_t rule_id,
42
+ const std::vector<llama_grammar_element> & rule) {
43
+ if (state.rules.size() <= rule_id) {
44
+ state.rules.resize(rule_id + 1);
45
+ }
46
+ state.rules[rule_id] = rule;
47
+ }
48
+
49
+ bool is_word_char(char c) {
50
+ return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
51
+ }
52
+
53
+ std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
54
+ const char * pos = src;
55
+ const char * end = src + size;
56
+ uint32_t value = 0;
57
+ for ( ; pos < end && *pos; pos++) {
58
+ value <<= 4;
59
+ char c = *pos;
60
+ if ('a' <= c && c <= 'f') {
61
+ value += c - 'a' + 10;
62
+ } else if ('A' <= c && c <= 'F') {
63
+ value += c - 'A' + 10;
64
+ } else if ('0' <= c && c <= '9') {
65
+ value += c - '0';
66
+ } else {
67
+ break;
68
+ }
69
+ }
70
+ if (pos != end) {
71
+ throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
72
+ }
73
+ return std::make_pair(value, pos);
74
+ }
75
+
76
+ const char * parse_space(const char * src, bool newline_ok) {
77
+ const char * pos = src;
78
+ while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
79
+ (newline_ok && (*pos == '\r' || *pos == '\n'))) {
80
+ if (*pos == '#') {
81
+ while (*pos && *pos != '\r' && *pos != '\n') {
82
+ pos++;
83
+ }
84
+ } else {
85
+ pos++;
86
+ }
87
+ }
88
+ return pos;
89
+ }
90
+
91
+ const char * parse_name(const char * src) {
92
+ const char * pos = src;
93
+ while (is_word_char(*pos)) {
94
+ pos++;
95
+ }
96
+ if (pos == src) {
97
+ throw std::runtime_error(std::string("expecting name at ") + src);
98
+ }
99
+ return pos;
100
+ }
101
+
102
+ std::pair<uint32_t, const char *> parse_char(const char * src) {
103
+ if (*src == '\\') {
104
+ switch (src[1]) {
105
+ case 'x': return parse_hex(src + 2, 2);
106
+ case 'u': return parse_hex(src + 2, 4);
107
+ case 'U': return parse_hex(src + 2, 8);
108
+ case 't': return std::make_pair('\t', src + 2);
109
+ case 'r': return std::make_pair('\r', src + 2);
110
+ case 'n': return std::make_pair('\n', src + 2);
111
+ case '\\':
112
+ case '"':
113
+ case '[':
114
+ case ']':
115
+ return std::make_pair(src[1], src + 2);
116
+ default:
117
+ throw std::runtime_error(std::string("unknown escape at ") + src);
118
+ }
119
+ } else if (*src) {
120
+ return decode_utf8(src);
121
+ }
122
+ throw std::runtime_error("unexpected end of input");
123
+ }
124
+
125
+ const char * parse_alternates(
126
+ parse_state & state,
127
+ const char * src,
128
+ const std::string & rule_name,
129
+ uint32_t rule_id,
130
+ bool is_nested);
131
+
132
+ const char * parse_sequence(
133
+ parse_state & state,
134
+ const char * src,
135
+ const std::string & rule_name,
136
+ std::vector<llama_grammar_element> & out_elements,
137
+ bool is_nested) {
138
+ size_t last_sym_start = out_elements.size();
139
+ const char * pos = src;
140
+ while (*pos) {
141
+ if (*pos == '"') { // literal string
142
+ pos++;
143
+ last_sym_start = out_elements.size();
144
+ while (*pos != '"') {
145
+ auto char_pair = parse_char(pos);
146
+ pos = char_pair.second;
147
+ out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
148
+ }
149
+ pos = parse_space(pos + 1, is_nested);
150
+ } else if (*pos == '[') { // char range(s)
151
+ pos++;
152
+ enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
153
+ if (*pos == '^') {
154
+ pos++;
155
+ start_type = LLAMA_GRETYPE_CHAR_NOT;
156
+ }
157
+ last_sym_start = out_elements.size();
158
+ while (*pos != ']') {
159
+ auto char_pair = parse_char(pos);
160
+ pos = char_pair.second;
161
+ enum llama_gretype type = last_sym_start < out_elements.size()
162
+ ? LLAMA_GRETYPE_CHAR_ALT
163
+ : start_type;
164
+
165
+ out_elements.push_back({type, char_pair.first});
166
+ if (pos[0] == '-' && pos[1] != ']') {
167
+ auto endchar_pair = parse_char(pos + 1);
168
+ pos = endchar_pair.second;
169
+ out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
170
+ }
171
+ }
172
+ pos = parse_space(pos + 1, is_nested);
173
+ } else if (is_word_char(*pos)) { // rule reference
174
+ const char * name_end = parse_name(pos);
175
+ uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
176
+ pos = parse_space(name_end, is_nested);
177
+ last_sym_start = out_elements.size();
178
+ out_elements.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
179
+ } else if (*pos == '(') { // grouping
180
+ // parse nested alternates into synthesized rule
181
+ pos = parse_space(pos + 1, true);
182
+ uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
183
+ pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
184
+ last_sym_start = out_elements.size();
185
+ // output reference to synthesized rule
186
+ out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
187
+ if (*pos != ')') {
188
+ throw std::runtime_error(std::string("expecting ')' at ") + pos);
189
+ }
190
+ pos = parse_space(pos + 1, is_nested);
191
+ } else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
192
+ if (last_sym_start == out_elements.size()) {
193
+ throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
194
+ }
195
+
196
+ // apply transformation to previous symbol (last_sym_start to end) according to
197
+ // rewrite rules:
198
+ // S* --> S' ::= S S' |
199
+ // S+ --> S' ::= S S' | S
200
+ // S? --> S' ::= S |
201
+ uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
202
+ std::vector<llama_grammar_element> sub_rule;
203
+ // add preceding symbol to generated rule
204
+ sub_rule.insert(
205
+ sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
206
+ if (*pos == '*' || *pos == '+') {
207
+ // cause generated rule to recurse
208
+ sub_rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
209
+ }
210
+ // mark start of alternate def
211
+ sub_rule.push_back({LLAMA_GRETYPE_ALT, 0});
212
+ if (*pos == '+') {
213
+ // add preceding symbol as alternate only for '+' (otherwise empty)
214
+ sub_rule.insert(
215
+ sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
216
+ }
217
+ sub_rule.push_back({LLAMA_GRETYPE_END, 0});
218
+ add_rule(state, sub_rule_id, sub_rule);
219
+
220
+ // in original rule, replace previous symbol with reference to generated rule
221
+ out_elements.resize(last_sym_start);
222
+ out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
223
+
224
+ pos = parse_space(pos + 1, is_nested);
225
+ } else {
226
+ break;
227
+ }
228
+ }
229
+ return pos;
230
+ }
231
+
232
+ const char * parse_alternates(
233
+ parse_state & state,
234
+ const char * src,
235
+ const std::string & rule_name,
236
+ uint32_t rule_id,
237
+ bool is_nested) {
238
+ std::vector<llama_grammar_element> rule;
239
+ const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
240
+ while (*pos == '|') {
241
+ rule.push_back({LLAMA_GRETYPE_ALT, 0});
242
+ pos = parse_space(pos + 1, true);
243
+ pos = parse_sequence(state, pos, rule_name, rule, is_nested);
244
+ }
245
+ rule.push_back({LLAMA_GRETYPE_END, 0});
246
+ add_rule(state, rule_id, rule);
247
+ return pos;
248
+ }
249
+
250
+ const char * parse_rule(parse_state & state, const char * src) {
251
+ const char * name_end = parse_name(src);
252
+ const char * pos = parse_space(name_end, false);
253
+ size_t name_len = name_end - src;
254
+ uint32_t rule_id = get_symbol_id(state, src, name_len);
255
+ const std::string name(src, name_len);
256
+
257
+ if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
258
+ throw std::runtime_error(std::string("expecting ::= at ") + pos);
259
+ }
260
+ pos = parse_space(pos + 3, true);
261
+
262
+ pos = parse_alternates(state, pos, name, rule_id, false);
263
+
264
+ if (*pos == '\r') {
265
+ pos += pos[1] == '\n' ? 2 : 1;
266
+ } else if (*pos == '\n') {
267
+ pos++;
268
+ } else if (*pos) {
269
+ throw std::runtime_error(std::string("expecting newline or end at ") + pos);
270
+ }
271
+ return parse_space(pos, true);
272
+ }
273
+
274
+ parse_state parse(const char * src) {
275
+ try {
276
+ parse_state state;
277
+ const char * pos = parse_space(src, true);
278
+ while (*pos) {
279
+ pos = parse_rule(state, pos);
280
+ }
281
+ return state;
282
+ } catch (const std::exception & err) {
283
+ fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
284
+ return parse_state();
285
+ }
286
+ }
287
+
288
+ void print_grammar_char(FILE * file, uint32_t c) {
289
+ if (0x20 <= c && c <= 0x7f) {
290
+ fprintf(file, "%c", static_cast<char>(c));
291
+ } else {
292
+ // cop out of encoding UTF-8
293
+ fprintf(file, "<U+%04X>", c);
294
+ }
295
+ }
296
+
297
+ bool is_char_element(llama_grammar_element elem) {
298
+ switch (elem.type) {
299
+ case LLAMA_GRETYPE_CHAR: return true;
300
+ case LLAMA_GRETYPE_CHAR_NOT: return true;
301
+ case LLAMA_GRETYPE_CHAR_ALT: return true;
302
+ case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
303
+ default: return false;
304
+ }
305
+ }
306
+
307
+ void print_rule_binary(FILE * file, const std::vector<llama_grammar_element> & rule) {
308
+ for (auto elem : rule) {
309
+ switch (elem.type) {
310
+ case LLAMA_GRETYPE_END: fprintf(file, "END"); break;
311
+ case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break;
312
+ case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
313
+ case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
314
+ case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
315
+ case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
316
+ case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
317
+ }
318
+ switch (elem.type) {
319
+ case LLAMA_GRETYPE_END:
320
+ case LLAMA_GRETYPE_ALT:
321
+ case LLAMA_GRETYPE_RULE_REF:
322
+ fprintf(file, "(%u) ", elem.value);
323
+ break;
324
+ case LLAMA_GRETYPE_CHAR:
325
+ case LLAMA_GRETYPE_CHAR_NOT:
326
+ case LLAMA_GRETYPE_CHAR_RNG_UPPER:
327
+ case LLAMA_GRETYPE_CHAR_ALT:
328
+ fprintf(file, "(\"");
329
+ print_grammar_char(file, elem.value);
330
+ fprintf(file, "\") ");
331
+ break;
332
+ }
333
+ }
334
+ fprintf(file, "\n");
335
+ }
336
+
337
+ void print_rule(
338
+ FILE * file,
339
+ uint32_t rule_id,
340
+ const std::vector<llama_grammar_element> & rule,
341
+ const std::map<uint32_t, std::string> & symbol_id_names) {
342
+ if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) {
343
+ throw std::runtime_error(
344
+ "malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id));
345
+ }
346
+ fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
347
+ for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
348
+ llama_grammar_element elem = rule[i];
349
+ switch (elem.type) {
350
+ case LLAMA_GRETYPE_END:
351
+ throw std::runtime_error(
352
+ "unexpected end of rule: " + std::to_string(rule_id) + "," +
353
+ std::to_string(i));
354
+ case LLAMA_GRETYPE_ALT:
355
+ fprintf(file, "| ");
356
+ break;
357
+ case LLAMA_GRETYPE_RULE_REF:
358
+ fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
359
+ break;
360
+ case LLAMA_GRETYPE_CHAR:
361
+ fprintf(file, "[");
362
+ print_grammar_char(file, elem.value);
363
+ break;
364
+ case LLAMA_GRETYPE_CHAR_NOT:
365
+ fprintf(file, "[^");
366
+ print_grammar_char(file, elem.value);
367
+ break;
368
+ case LLAMA_GRETYPE_CHAR_RNG_UPPER:
369
+ if (i == 0 || !is_char_element(rule[i - 1])) {
370
+ throw std::runtime_error(
371
+ "LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
372
+ std::to_string(rule_id) + "," + std::to_string(i));
373
+ }
374
+ fprintf(file, "-");
375
+ print_grammar_char(file, elem.value);
376
+ break;
377
+ case LLAMA_GRETYPE_CHAR_ALT:
378
+ if (i == 0 || !is_char_element(rule[i - 1])) {
379
+ throw std::runtime_error(
380
+ "LLAMA_GRETYPE_CHAR_ALT without preceding char: " +
381
+ std::to_string(rule_id) + "," + std::to_string(i));
382
+ }
383
+ print_grammar_char(file, elem.value);
384
+ break;
385
+ }
386
+ if (is_char_element(elem)) {
387
+ switch (rule[i + 1].type) {
388
+ case LLAMA_GRETYPE_CHAR_ALT:
389
+ case LLAMA_GRETYPE_CHAR_RNG_UPPER:
390
+ break;
391
+ default:
392
+ fprintf(file, "] ");
393
+ }
394
+ }
395
+ }
396
+ fprintf(file, "\n");
397
+ }
398
+
399
+ void print_grammar(FILE * file, const parse_state & state) {
400
+ try {
401
+ std::map<uint32_t, std::string> symbol_id_names;
402
+ for (auto kv : state.symbol_ids) {
403
+ symbol_id_names[kv.second] = kv.first;
404
+ }
405
+ for (size_t i = 0, end = state.rules.size(); i < end; i++) {
406
+ // fprintf(file, "%zu: ", i);
407
+ // print_rule_binary(file, state.rules[i]);
408
+ print_rule(file, i, state.rules[i], symbol_id_names);
409
+ // fprintf(file, "\n");
410
+ }
411
+ } catch (const std::exception & err) {
412
+ fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
413
+ }
414
+ }
415
+
416
+ std::vector<const llama_grammar_element *> parse_state::c_rules() {
417
+ std::vector<const llama_grammar_element *> ret;
418
+ for (const auto & rule : rules) {
419
+ ret.push_back(rule.data());
420
+ }
421
+ return ret;
422
+ }
423
+ }
examples/grammar-parser.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Implements a parser for an extended Backus-Naur form (BNF), producing the
2
+ // binary context-free grammar format specified by llama.h. Supports character
3
+ // ranges, grouping, and repetition operators. As an example, a grammar for
4
+ // arithmetic might look like:
5
+ //
6
+ // root ::= expr
7
+ // expr ::= term ([-+*/] term)*
8
+ // term ::= num | "(" space expr ")" space
9
+ // num ::= [0-9]+ space
10
+ // space ::= [ \t\n]*
11
+
12
+ #pragma once
13
+ #include "llama.h"
14
+ #include <vector>
15
+ #include <map>
16
+ #include <cstdint>
17
+ #include <string>
18
+
19
+ namespace grammar_parser {
20
+ struct parse_state {
21
+ std::map<std::string, uint32_t> symbol_ids;
22
+ std::vector<std::vector<llama_grammar_element>> rules;
23
+
24
+ std::vector<const llama_grammar_element *> c_rules();
25
+ };
26
+
27
+ parse_state parse(const char * src);
28
+ void print_grammar(FILE * file, const parse_state & state);
29
+ }
examples/llama2-13b.sh ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #
4
+ # Temporary script - will be removed in the future
5
+ #
6
+
7
+ cd `dirname $0`
8
+ cd ..
9
+
10
+ ./main -m models/available/Llama2/13B/llama-2-13b.ggmlv3.q4_0.bin \
11
+ --color \
12
+ --ctx_size 2048 \
13
+ -n -1 \
14
+ -ins -b 256 \
15
+ --top_k 10000 \
16
+ --temp 0.2 \
17
+ --repeat_penalty 1.1 \
18
+ -t 8
examples/llama2.sh ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #
4
+ # Temporary script - will be removed in the future
5
+ #
6
+
7
+ cd `dirname $0`
8
+ cd ..
9
+
10
+ ./main -m models/available/Llama2/7B/llama-2-7b.ggmlv3.q4_0.bin \
11
+ --color \
12
+ --ctx_size 2048 \
13
+ -n -1 \
14
+ -ins -b 256 \
15
+ --top_k 10000 \
16
+ --temp 0.2 \
17
+ --repeat_penalty 1.1 \
18
+ -t 8
examples/llm.vim ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ function! Llm()
2
+
3
+ let url = "http://127.0.0.1:8080/completion"
4
+
5
+ " Get the content of the current buffer
6
+ let buffer_content = join(getline(1, '$'), "\n")
7
+
8
+ " Create the JSON payload
9
+ let json_payload = {"temp":0.72,"top_k":100,"top_p":0.73,"repeat_penalty":1.100000023841858,"n_predict":10,"stream": v:false}
10
+ let json_payload.prompt = buffer_content
11
+
12
+ " Define the curl command
13
+ let curl_command = 'curl -k -s -X POST -H "Content-Type: application/json" -d @- ' . url
14
+ let response = system(curl_command, json_encode(json_payload))
15
+
16
+ " Extract the content field from the response
17
+ let content = json_decode(response).content
18
+
19
+ " Insert the content at the cursor position
20
+ call setline(line('.'), getline('.') . content)
21
+ endfunction
22
+
23
+ command! Llm call Llm()
examples/main/CMakeLists.txt CHANGED
@@ -1,5 +1,6 @@
1
  set(TARGET main)
2
  add_executable(${TARGET} main.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
5
  if(TARGET BUILD_INFO)
 
1
  set(TARGET main)
2
  add_executable(${TARGET} main.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
6
  if(TARGET BUILD_INFO)
examples/main/README.md CHANGED
@@ -293,5 +293,5 @@ These options provide extra functionality and customization when running the LLa
293
  - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
294
  - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
295
  - `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS.
296
- - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model. This allows you to adapt the pretrained model to specific tasks or domains.
297
  - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
 
293
  - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
294
  - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
295
  - `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS.
296
+ - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
297
  - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
examples/main/main.cpp CHANGED
@@ -6,6 +6,7 @@
6
  #include "common.h"
7
  #include "llama.h"
8
  #include "build-info.h"
 
9
 
10
  #include <cassert>
11
  #include <cinttypes>
@@ -84,9 +85,17 @@ int main(int argc, char ** argv) {
84
  return 0;
85
  }
86
 
 
 
 
 
 
 
 
 
87
  if (params.n_ctx > 2048) {
88
- fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
89
- "expect poor results\n", __func__, params.n_ctx);
90
  } else if (params.n_ctx < 8) {
91
  fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
92
  params.n_ctx = 8;
@@ -131,17 +140,14 @@ int main(int argc, char ** argv) {
131
  params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
132
  }
133
 
134
- // determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
135
  // uncomment the "used_mem" line in llama.cpp to see the results
136
  if (params.mem_test) {
137
  {
138
- const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
139
- llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
140
- }
141
 
142
- {
143
- const std::vector<llama_token> tmp = { 0, };
144
- llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
145
  }
146
 
147
  llama_print_timings(ctx);
@@ -319,6 +325,10 @@ int main(int argc, char ** argv) {
319
  }
320
  }
321
 
 
 
 
 
322
  if (!params.input_prefix.empty()) {
323
  fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
324
  }
@@ -332,6 +342,31 @@ int main(int argc, char ** argv) {
332
  fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
333
  fprintf(stderr, "\n\n");
334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335
  // TODO: replace with ring-buffer
336
  std::vector<llama_token> last_n_tokens(n_ctx);
337
  std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
@@ -549,7 +584,7 @@ int main(int argc, char ** argv) {
549
  llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
550
 
551
  if (ctx_guidance) {
552
- llama_sample_classifier_free_guidance(ctx, &candidates_p, ctx_guidance, params.cfg_scale, params.cfg_smooth_factor);
553
  }
554
 
555
  // Apply penalties
@@ -565,6 +600,10 @@ int main(int argc, char ** argv) {
565
  logits[llama_token_nl()] = nl_logit;
566
  }
567
 
 
 
 
 
568
  if (temp <= 0) {
569
  // Greedy sampling
570
  id = llama_sample_token_greedy(ctx, &candidates_p);
@@ -590,20 +629,14 @@ int main(int argc, char ** argv) {
590
  }
591
  // printf("`%d`", candidates_p.size);
592
 
 
 
 
 
593
  last_n_tokens.erase(last_n_tokens.begin());
594
  last_n_tokens.push_back(id);
595
  }
596
 
597
- // replace end of text token with newline token when in interactive mode
598
- if (id == llama_token_eos() && params.interactive && !params.instruct) {
599
- id = llama_token_newline.front();
600
- if (params.antiprompt.size() != 0) {
601
- // tokenize and inject first reverse prompt
602
- const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
603
- embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
604
- }
605
- }
606
-
607
  // add it to the context
608
  embd.push_back(id);
609
 
@@ -669,11 +702,34 @@ int main(int argc, char ** argv) {
669
  }
670
  }
671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672
  if (n_past > 0 && is_interacting) {
673
  if (params.instruct) {
674
  printf("\n> ");
675
  }
676
 
 
 
 
 
677
  std::string buffer;
678
  if (!params.input_prefix.empty()) {
679
  buffer += params.input_prefix;
@@ -720,18 +776,26 @@ int main(int argc, char ** argv) {
720
  }
721
 
722
  if (n_past > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
723
  is_interacting = false;
724
  }
725
  }
726
 
727
  // end of text token
728
- if (!embd.empty() && embd.back() == llama_token_eos()) {
729
- if (params.instruct) {
730
- is_interacting = true;
731
- } else {
732
- fprintf(stderr, " [end of text]\n");
733
- break;
734
- }
735
  }
736
 
737
  // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
@@ -751,6 +815,9 @@ int main(int argc, char ** argv) {
751
  llama_free(ctx);
752
  llama_free_model(model);
753
 
 
 
 
754
  llama_backend_free();
755
 
756
  return 0;
 
6
  #include "common.h"
7
  #include "llama.h"
8
  #include "build-info.h"
9
+ #include "grammar-parser.h"
10
 
11
  #include <cassert>
12
  #include <cinttypes>
 
85
  return 0;
86
  }
87
 
88
+ if (params.rope_freq_base != 10000.0) {
89
+ fprintf(stderr, "%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
90
+ }
91
+
92
+ if (params.rope_freq_scale != 1.0) {
93
+ fprintf(stderr, "%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
94
+ }
95
+
96
  if (params.n_ctx > 2048) {
97
+ // TODO: determine the actual max context of the model (e.g. 4096 for LLaMA v2) and use that instead of 2048
98
+ fprintf(stderr, "%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified)\n", __func__, params.n_ctx);
99
  } else if (params.n_ctx < 8) {
100
  fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
101
  params.n_ctx = 8;
 
140
  params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
141
  }
142
 
143
+ // determine the maximum memory usage needed to do inference for the given n_batch and n_ctx parameters
144
  // uncomment the "used_mem" line in llama.cpp to see the results
145
  if (params.mem_test) {
146
  {
147
+ fprintf(stderr, "%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx);
 
 
148
 
149
+ const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
150
+ llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads);
 
151
  }
152
 
153
  llama_print_timings(ctx);
 
325
  }
326
  }
327
 
328
+ if (params.input_prefix_bos) {
329
+ fprintf(stderr, "Input prefix with BOS\n");
330
+ }
331
+
332
  if (!params.input_prefix.empty()) {
333
  fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
334
  }
 
342
  fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
343
  fprintf(stderr, "\n\n");
344
 
345
+ grammar_parser::parse_state parsed_grammar;
346
+ llama_grammar * grammar = NULL;
347
+ if (!params.grammar.empty()) {
348
+ parsed_grammar = grammar_parser::parse(params.grammar.c_str());
349
+ // will be empty (default) if there are parse errors
350
+ if (parsed_grammar.rules.empty()) {
351
+ return 1;
352
+ }
353
+ fprintf(stderr, "%s: grammar:\n", __func__);
354
+ grammar_parser::print_grammar(stderr, parsed_grammar);
355
+ fprintf(stderr, "\n");
356
+
357
+ {
358
+ auto it = params.logit_bias.find(llama_token_eos());
359
+ if (it != params.logit_bias.end() && it->second == -INFINITY) {
360
+ fprintf(stderr,
361
+ "%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
362
+ }
363
+ }
364
+
365
+ std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
366
+ grammar = llama_grammar_init(
367
+ grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
368
+ }
369
+
370
  // TODO: replace with ring-buffer
371
  std::vector<llama_token> last_n_tokens(n_ctx);
372
  std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 
584
  llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
585
 
586
  if (ctx_guidance) {
587
+ llama_sample_classifier_free_guidance(ctx, &candidates_p, ctx_guidance, params.cfg_scale);
588
  }
589
 
590
  // Apply penalties
 
600
  logits[llama_token_nl()] = nl_logit;
601
  }
602
 
603
+ if (grammar != NULL) {
604
+ llama_sample_grammar(ctx, &candidates_p, grammar);
605
+ }
606
+
607
  if (temp <= 0) {
608
  // Greedy sampling
609
  id = llama_sample_token_greedy(ctx, &candidates_p);
 
629
  }
630
  // printf("`%d`", candidates_p.size);
631
 
632
+ if (grammar != NULL) {
633
+ llama_grammar_accept_token(ctx, grammar, id);
634
+ }
635
+
636
  last_n_tokens.erase(last_n_tokens.begin());
637
  last_n_tokens.push_back(id);
638
  }
639
 
 
 
 
 
 
 
 
 
 
 
640
  // add it to the context
641
  embd.push_back(id);
642
 
 
702
  }
703
  }
704
 
705
+ // deal with end of text token in interactive mode
706
+ if (last_n_tokens.back() == llama_token_eos()) {
707
+ if (params.interactive) {
708
+ if (params.antiprompt.size() != 0) {
709
+ // tokenize and inject first reverse prompt
710
+ const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
711
+ embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
712
+ is_antiprompt = true;
713
+ }
714
+
715
+ is_interacting = true;
716
+ printf("\n");
717
+ console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
718
+ fflush(stdout);
719
+ } else if (params.instruct) {
720
+ is_interacting = true;
721
+ }
722
+ }
723
+
724
  if (n_past > 0 && is_interacting) {
725
  if (params.instruct) {
726
  printf("\n> ");
727
  }
728
 
729
+ if (params.input_prefix_bos) {
730
+ embd_inp.push_back(llama_token_bos());
731
+ }
732
+
733
  std::string buffer;
734
  if (!params.input_prefix.empty()) {
735
  buffer += params.input_prefix;
 
776
  }
777
 
778
  if (n_past > 0) {
779
+ if (is_interacting) {
780
+ // reset grammar state if we're restarting generation
781
+ if (grammar != NULL) {
782
+ llama_grammar_free(grammar);
783
+
784
+ std::vector<const llama_grammar_element *> grammar_rules(
785
+ parsed_grammar.c_rules());
786
+ grammar = llama_grammar_init(
787
+ grammar_rules.data(), grammar_rules.size(),
788
+ parsed_grammar.symbol_ids.at("root"));
789
+ }
790
+ }
791
  is_interacting = false;
792
  }
793
  }
794
 
795
  // end of text token
796
+ if (!embd.empty() && embd.back() == llama_token_eos() && !(params.instruct || params.interactive)) {
797
+ fprintf(stderr, " [end of text]\n");
798
+ break;
 
 
 
 
799
  }
800
 
801
  // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
 
815
  llama_free(ctx);
816
  llama_free_model(model);
817
 
818
+ if (grammar != NULL) {
819
+ llama_grammar_free(grammar);
820
+ }
821
  llama_backend_free();
822
 
823
  return 0;
examples/make-ggml.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script converts Hugging Face llama models to GGML and quantizes them.
3
+
4
+ Usage:
5
+ python make-ggml.py --model {model_dir_or_hf_repo_name} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)]
6
+
7
+ Arguments:
8
+ - --model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub.
9
+ - --outname: (Optional) The name of the output model. If not specified, the last part of the model directory path or the Hugging Face model repo name will be used.
10
+ - --outdir: (Optional) The directory where the output model(s) will be stored. If not specified, '../models/{outname}' will be used.
11
+ - --quants: (Optional) The types of quantization to apply. This should be a space-separated list. The default is 'Q4_K_M Q5_K_S'.
12
+ - --keep_fp16: (Optional) If specified, the FP16 model will not be deleted after the quantized models are created.
13
+
14
+ Quant types:
15
+ - Q4_0: small, very high quality loss - legacy, prefer using Q3_K_M
16
+ - Q4_1: small, substantial quality loss - legacy, prefer using Q3_K_L
17
+ - Q5_0: medium, balanced quality - legacy, prefer using Q4_K_M
18
+ - Q5_1: medium, low quality loss - legacy, prefer using Q5_K_M
19
+ - Q2_K: smallest, extreme quality loss - not recommended
20
+ - Q3_K: alias for Q3_K_M
21
+ - Q3_K_S: very small, very high quality loss
22
+ - Q3_K_M: very small, very high quality loss
23
+ - Q3_K_L: small, substantial quality loss
24
+ - Q4_K: alias for Q4_K_M
25
+ - Q4_K_S: small, significant quality loss
26
+ - Q4_K_M: medium, balanced quality - recommended
27
+ - Q5_K: alias for Q5_K_M
28
+ - Q5_K_S: large, low quality loss - recommended
29
+ - Q5_K_M: large, very low quality loss - recommended
30
+ - Q6_K: very large, extremely low quality loss
31
+ - Q8_0: very large, extremely low quality loss - not recommended
32
+ - F16: extremely large, virtually no quality loss - not recommended
33
+ - F32: absolutely huge, lossless - not recommended
34
+ """
35
+ import subprocess
36
+ subprocess.run(f"pip install huggingface-hub==0.16.4", shell=True, check=True)
37
+
38
+ import argparse
39
+ import os
40
+ from huggingface_hub import snapshot_download
41
+
42
+ def main(model, outname, outdir, quants, keep_fp16):
43
+ ggml_version = "v3"
44
+
45
+ if not os.path.isdir(model):
46
+ print(f"Model not found at {model}. Downloading...")
47
+ try:
48
+ if outname is None:
49
+ outname = model.split('/')[-1]
50
+ model = snapshot_download(repo_id=model, cache_dir='../models/hf_cache')
51
+ except Exception as e:
52
+ raise Exception(f"Could not download the model: {e}")
53
+
54
+ if outdir is None:
55
+ outdir = f'../models/{outname}'
56
+
57
+ if not os.path.isfile(f"{model}/config.json"):
58
+ raise Exception(f"Could not find config.json in {model}")
59
+
60
+ os.makedirs(outdir, exist_ok=True)
61
+
62
+ print("Building llama.cpp")
63
+ subprocess.run(f"cd .. && make quantize", shell=True, check=True)
64
+
65
+ fp16 = f"{outdir}/{outname}.ggml{ggml_version}.fp16.bin"
66
+
67
+ print(f"Making unquantised GGML at {fp16}")
68
+ if not os.path.isfile(fp16):
69
+ subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True)
70
+ else:
71
+ print(f"Unquantised GGML already exists at: {fp16}")
72
+
73
+ print("Making quants")
74
+ for type in quants:
75
+ outfile = f"{outdir}/{outname}.ggml{ggml_version}.{type}.bin"
76
+ print(f"Making {type} : {outfile}")
77
+ subprocess.run(f"../quantize {fp16} {outfile} {type}", shell=True, check=True)
78
+
79
+ if not keep_fp16:
80
+ os.remove(fp16)
81
+
82
+ if __name__ == "__main__":
83
+ parser = argparse.ArgumentParser(description='Convert/Quantize HF to GGML. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.')
84
+ parser.add_argument('--model', required=True, help='Downloaded model dir or Hugging Face model repo name')
85
+ parser.add_argument('--outname', default=None, help='Output model(s) name')
86
+ parser.add_argument('--outdir', default=None, help='Output directory')
87
+ parser.add_argument('--quants', nargs='*', default=["Q4_K_M", "Q5_K_S"], help='Quant types')
88
+ parser.add_argument('--keep_fp16', action='store_true', help='Keep fp16 model', default=False)
89
+
90
+ args = parser.parse_args()
91
+
92
+ main(args.model, args.outname, args.outdir, args.quants, args.keep_fp16)
examples/metal/CMakeLists.txt CHANGED
@@ -1,3 +1,4 @@
1
  set(TEST_TARGET metal)
2
  add_executable(${TEST_TARGET} metal.cpp)
 
3
  target_link_libraries(${TEST_TARGET} PRIVATE ggml)
 
1
  set(TEST_TARGET metal)
2
  add_executable(${TEST_TARGET} metal.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TEST_TARGET} PRIVATE ggml)
examples/perplexity/CMakeLists.txt CHANGED
@@ -1,5 +1,6 @@
1
  set(TARGET perplexity)
2
  add_executable(${TARGET} perplexity.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
5
  if(TARGET BUILD_INFO)
 
1
  set(TARGET perplexity)
2
  add_executable(${TARGET} perplexity.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
6
  if(TARGET BUILD_INFO)
examples/perplexity/perplexity.cpp CHANGED
@@ -4,6 +4,7 @@
4
 
5
  #include <cmath>
6
  #include <ctime>
 
7
 
8
  #if defined(_MSC_VER)
9
  #pragma warning(disable: 4244 4267) // possible loss of data
@@ -32,13 +33,15 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
32
  // BOS tokens will be added for each chunk before eval
33
  auto tokens = ::llama_tokenize(ctx, params.prompt, true);
34
 
35
- int count = 0;
36
 
37
- const int n_chunk = tokens.size() / params.n_ctx;
38
  const int n_vocab = llama_n_vocab(ctx);
39
  const int n_batch = params.n_batch;
40
 
 
41
  double nll = 0.0;
 
42
  fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
43
 
44
  for (int i = 0; i < n_chunk; ++i) {
@@ -118,6 +121,77 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
118
  printf("\n");
119
  }
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  int main(int argc, char ** argv) {
122
  gpt_params params;
123
 
@@ -166,7 +240,11 @@ int main(int argc, char ** argv) {
166
  params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
167
  }
168
 
169
- perplexity(ctx, params);
 
 
 
 
170
 
171
  llama_print_timings(ctx);
172
  llama_free(ctx);
 
4
 
5
  #include <cmath>
6
  #include <ctime>
7
+ #include <sstream>
8
 
9
  #if defined(_MSC_VER)
10
  #pragma warning(disable: 4244 4267) // possible loss of data
 
33
  // BOS tokens will be added for each chunk before eval
34
  auto tokens = ::llama_tokenize(ctx, params.prompt, true);
35
 
36
+ const int n_chunk_max = tokens.size() / params.n_ctx;
37
 
38
+ const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
39
  const int n_vocab = llama_n_vocab(ctx);
40
  const int n_batch = params.n_batch;
41
 
42
+ int count = 0;
43
  double nll = 0.0;
44
+
45
  fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
46
 
47
  for (int i = 0; i < n_chunk; ++i) {
 
121
  printf("\n");
122
  }
123
 
124
+ void perplexity_lines(llama_context * ctx, const gpt_params & params) {
125
+ // Calculates perplexity over each line of the prompt
126
+
127
+ std::vector<std::string> prompt_lines;
128
+ std::istringstream strstream(params.prompt);
129
+ std::string line;
130
+
131
+ while (std::getline(strstream,line,'\n')) {
132
+ prompt_lines.push_back(line);
133
+ }
134
+
135
+ const int n_vocab = llama_n_vocab(ctx);
136
+
137
+ int counttotal = 0;
138
+ size_t n_lines = prompt_lines.size();
139
+
140
+ double nll = 0.0;
141
+
142
+ fprintf(stderr, "%s: calculating perplexity over %lu lines\n", __func__, n_lines);
143
+
144
+ printf("\nLine\tPPL line\tPPL cumulative\n");
145
+
146
+ for (size_t i = 0; i < n_lines; ++i) {
147
+
148
+ // Tokenize and insert BOS at start
149
+ std::vector<int> batch_embd = ::llama_tokenize(ctx, prompt_lines[i], true);
150
+
151
+ size_t batch_size = batch_embd.size();
152
+
153
+ // Stop if line is too long
154
+ if( batch_size > (size_t)params.n_ctx ) {
155
+ fprintf(stderr, "%s : tokens in line %lu > n_ctxl\n", __func__, i);
156
+ return;
157
+ }
158
+
159
+ if (llama_eval(ctx, batch_embd.data(), batch_size, 0, params.n_threads)) {
160
+ fprintf(stderr, "%s : failed to eval\n", __func__);
161
+ return;
162
+ }
163
+
164
+ const auto batch_logits = llama_get_logits(ctx);
165
+ std::vector<float> logits;
166
+ logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
167
+
168
+ double nllline = 0.0;
169
+ int countline = 0;
170
+
171
+ // Perplexity over second half of the line
172
+ for (size_t j = batch_size/2; j < batch_size - 1; ++j) {
173
+ // Calculate probability of next token, given the previous ones.
174
+ const std::vector<float> tok_logits(
175
+ logits.begin() + (j + 0) * n_vocab,
176
+ logits.begin() + (j + 1) * n_vocab);
177
+
178
+ const float prob = softmax(tok_logits)[batch_embd[ j + 1]];
179
+
180
+ nllline += -std::log(prob);
181
+ ++countline;
182
+ }
183
+
184
+ nll += nllline;
185
+ counttotal += countline;
186
+
187
+ // perplexity is e^(average negative log-likelihood)
188
+ printf("%lu\t%.8lf\t%.8lf\n", i + 1, std::exp(nllline/countline), std::exp(nll / counttotal) );
189
+ fflush(stdout);
190
+ }
191
+
192
+ printf("\n");
193
+ }
194
+
195
  int main(int argc, char ** argv) {
196
  gpt_params params;
197
 
 
240
  params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
241
  }
242
 
243
+ if (params.perplexity_lines) {
244
+ perplexity_lines(ctx, params);
245
+ } else {
246
+ perplexity(ctx, params);
247
+ }
248
 
249
  llama_print_timings(ctx);
250
  llama_free(ctx);
examples/quantize-stats/CMakeLists.txt CHANGED
@@ -1,4 +1,5 @@
1
  set(TARGET quantize-stats)
2
  add_executable(${TARGET} quantize-stats.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
 
1
  set(TARGET quantize-stats)
2
  add_executable(${TARGET} quantize-stats.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
examples/quantize/CMakeLists.txt CHANGED
@@ -1,5 +1,6 @@
1
  set(TARGET quantize)
2
  add_executable(${TARGET} quantize.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
5
  if(TARGET BUILD_INFO)
 
1
  set(TARGET quantize)
2
  add_executable(${TARGET} quantize.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
6
  if(TARGET BUILD_INFO)
examples/quantize/quantize.cpp CHANGED
@@ -12,103 +12,27 @@ struct quant_option {
12
  };
13
 
14
  static const std::vector<struct quant_option> QUANT_OPTIONS = {
15
- {
16
- "Q4_0",
17
- LLAMA_FTYPE_MOSTLY_Q4_0,
18
- " 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M",
19
- },
20
- {
21
- "Q4_1",
22
- LLAMA_FTYPE_MOSTLY_Q4_1,
23
- " 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L",
24
- },
25
- {
26
- "Q5_0",
27
- LLAMA_FTYPE_MOSTLY_Q5_0,
28
- " 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M",
29
- },
30
- {
31
- "Q5_1",
32
- LLAMA_FTYPE_MOSTLY_Q5_1,
33
- " 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M",
34
- },
35
  #ifdef GGML_USE_K_QUANTS
36
- {
37
- "Q2_K",
38
- LLAMA_FTYPE_MOSTLY_Q2_K,
39
- " 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended",
40
- },
41
- {
42
- "Q3_K",
43
- LLAMA_FTYPE_MOSTLY_Q3_K_M,
44
- "alias for Q3_K_M"
45
- },
46
- {
47
- "Q3_K_S",
48
- LLAMA_FTYPE_MOSTLY_Q3_K_S,
49
- " 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss",
50
- },
51
- {
52
- "Q3_K_M",
53
- LLAMA_FTYPE_MOSTLY_Q3_K_M,
54
- " 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss",
55
- },
56
- {
57
- "Q3_K_L",
58
- LLAMA_FTYPE_MOSTLY_Q3_K_L,
59
- " 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss",
60
- },
61
- {
62
- "Q4_K",
63
- LLAMA_FTYPE_MOSTLY_Q4_K_M,
64
- "alias for Q4_K_M",
65
- },
66
- {
67
- "Q4_K_S",
68
- LLAMA_FTYPE_MOSTLY_Q4_K_S,
69
- " 3.56G, +0.1149 ppl @ 7B - small, significant quality loss",
70
- },
71
- {
72
- "Q4_K_M",
73
- LLAMA_FTYPE_MOSTLY_Q4_K_M,
74
- " 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*",
75
- },
76
- {
77
- "Q5_K",
78
- LLAMA_FTYPE_MOSTLY_Q5_K_M,
79
- "alias for Q5_K_M",
80
- },
81
- {
82
- "Q5_K_S",
83
- LLAMA_FTYPE_MOSTLY_Q5_K_S,
84
- " 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*",
85
- },
86
- {
87
- "Q5_K_M",
88
- LLAMA_FTYPE_MOSTLY_Q5_K_M,
89
- " 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*",
90
- },
91
- {
92
- "Q6_K",
93
- LLAMA_FTYPE_MOSTLY_Q6_K,
94
- " 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss",
95
- },
96
  #endif
97
- {
98
- "Q8_0",
99
- LLAMA_FTYPE_MOSTLY_Q8_0,
100
- " 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended",
101
- },
102
- {
103
- "F16",
104
- LLAMA_FTYPE_MOSTLY_F16,
105
- "13.00G @ 7B - extremely large, virtually no quality loss - not recommended",
106
- },
107
- {
108
- "F32",
109
- LLAMA_FTYPE_ALL_F32,
110
- "26.00G @ 7B - absolutely huge, lossless - not recommended",
111
- },
112
  };
113
 
114
 
 
12
  };
13
 
14
  static const std::vector<struct quant_option> QUANT_OPTIONS = {
15
+ { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.50G, +0.2499 ppl @ 7B", },
16
+ { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1846 ppl @ 7B", },
17
+ { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.30G, +0.0796 ppl @ 7B", },
18
+ { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0415 ppl @ 7B", },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  #ifdef GGML_USE_K_QUANTS
20
+ { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.67G, +0.8698 ppl @ 7B", },
21
+ { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
22
+ { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5505 ppl @ 7B", },
23
+ { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.06G, +0.2437 ppl @ 7B", },
24
+ { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1803 ppl @ 7B", },
25
+ { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
26
+ { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.56G, +0.1149 ppl @ 7B", },
27
+ { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0535 ppl @ 7B", },
28
+ { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
29
+ { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0353 ppl @ 7B", },
30
+ { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0142 ppl @ 7B", },
31
+ { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0044 ppl @ 7B", },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  #endif
33
+ { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ 7B", },
34
+ { "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
35
+ { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
 
 
 
 
 
 
 
 
 
 
 
 
36
  };
37
 
38
 
examples/save-load-state/CMakeLists.txt CHANGED
@@ -1,5 +1,6 @@
1
  set(TARGET save-load-state)
2
  add_executable(${TARGET} save-load-state.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
5
  if(TARGET BUILD_INFO)
 
1
  set(TARGET save-load-state)
2
  add_executable(${TARGET} save-load-state.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
6
  if(TARGET BUILD_INFO)
examples/server/CMakeLists.txt CHANGED
@@ -2,10 +2,14 @@ set(TARGET server)
2
  option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
3
  include_directories(${CMAKE_CURRENT_SOURCE_DIR})
4
  add_executable(${TARGET} server.cpp json.hpp httplib.h)
 
5
  target_compile_definitions(${TARGET} PRIVATE
6
  SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
7
  )
8
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
 
 
 
9
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
10
  if(TARGET BUILD_INFO)
11
  add_dependencies(${TARGET} BUILD_INFO)
 
2
  option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
3
  include_directories(${CMAKE_CURRENT_SOURCE_DIR})
4
  add_executable(${TARGET} server.cpp json.hpp httplib.h)
5
+ install(TARGETS ${TARGET} RUNTIME)
6
  target_compile_definitions(${TARGET} PRIVATE
7
  SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
8
  )
9
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
10
+ if (WIN32)
11
+ TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
12
+ endif()
13
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
14
  if(TARGET BUILD_INFO)
15
  add_dependencies(${TARGET} BUILD_INFO)
examples/server/README.md CHANGED
@@ -16,7 +16,7 @@ Command line options:
16
  - `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
17
  - `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
18
  - `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
19
- - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model. This allows you to adapt the pretrained model to specific tasks or domains.
20
  - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
21
  - `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
22
  - `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
@@ -66,6 +66,7 @@ Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the
66
  ```sh
67
  curl --request POST \
68
  --url http://localhost:8080/completion \
 
69
  --data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
70
  ```
71
 
 
16
  - `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
17
  - `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
18
  - `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
19
+ - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
20
  - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
21
  - `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
22
  - `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
 
66
  ```sh
67
  curl --request POST \
68
  --url http://localhost:8080/completion \
69
+ --header "Content-Type: application/json" \
70
  --data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
71
  ```
72
 
examples/server/chat.sh CHANGED
@@ -32,6 +32,7 @@ tokenize() {
32
  --silent \
33
  --request POST \
34
  --url "${API_URL}/tokenize" \
 
35
  --data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \
36
  | jq '.tokens[]'
37
  }
@@ -64,6 +65,7 @@ chat_completion() {
64
  --no-buffer \
65
  --request POST \
66
  --url "${API_URL}/completion" \
 
67
  --data-raw "${DATA}")
68
 
69
  printf "\n"
 
32
  --silent \
33
  --request POST \
34
  --url "${API_URL}/tokenize" \
35
+ --header "Content-Type: application/json" \
36
  --data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \
37
  | jq '.tokens[]'
38
  }
 
65
  --no-buffer \
66
  --request POST \
67
  --url "${API_URL}/completion" \
68
+ --header "Content-Type: application/json" \
69
  --data-raw "${DATA}")
70
 
71
  printf "\n"
examples/server/index.html.hpp CHANGED
@@ -111,103 +111,176 @@ unsigned char index_html[] = {
111
  0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20,
112
  0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72,
113
  0x67, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
114
- 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x78, 0x74, 0x61,
115
- 0x72, 0x65, 0x61, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
116
- 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x35, 0x70, 0x78,
117
- 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78,
118
- 0x2d, 0x67, 0x72, 0x6f, 0x77, 0x3a, 0x20, 0x31, 0x3b, 0x0a, 0x20, 0x20,
119
- 0x20, 0x20, 0x20, 0x20, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3a, 0x20, 0x31,
120
- 0x30, 0x30, 0x25, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a,
121
- 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, 0x65, 0x20, 0x63, 0x6f, 0x64, 0x65,
122
- 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73,
123
- 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x3b,
124
- 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67,
125
- 0x72, 0x6f, 0x75, 0x6e, 0x64, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a,
126
- 0x20, 0x23, 0x32, 0x32, 0x32, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
127
- 0x20, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x64, 0x64, 0x64,
128
- 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
129
- 0x63, 0x6f, 0x64, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
130
- 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x66, 0x61, 0x6d, 0x69, 0x6c, 0x79,
131
- 0x3a, 0x20, 0x6d, 0x6f, 0x6e, 0x6f, 0x73, 0x70, 0x61, 0x63, 0x65, 0x3b,
132
- 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69,
133
- 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x2e, 0x31, 0x65, 0x6d, 0x20, 0x30, 0x2e,
134
- 0x33, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62,
135
- 0x6f, 0x72, 0x64, 0x65, 0x72, 0x2d, 0x72, 0x61, 0x64, 0x69, 0x75, 0x73,
136
- 0x3a, 0x20, 0x33, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
137
- 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73,
138
- 0x65, 0x74, 0x20, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x7b, 0x0a, 0x20,
139
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a,
140
- 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20,
141
  0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a,
142
- 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
143
- 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61, 0x64, 0x65,
144
- 0x72, 0x2c, 0x20, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a,
145
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2d, 0x61,
146
- 0x6c, 0x69, 0x67, 0x6e, 0x3a, 0x20, 0x63, 0x65, 0x6e, 0x74, 0x65, 0x72,
 
 
 
 
 
 
 
147
  0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
  0x20, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a, 0x20, 0x20,
149
- 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x73, 0x69, 0x7a,
150
- 0x65, 0x3a, 0x20, 0x38, 0x30, 0x25, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
151
- 0x20, 0x20, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x38, 0x38,
152
- 0x38, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x3c,
153
- 0x2f, 0x73, 0x74, 0x79, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x3c,
154
- 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d,
155
- 0x22, 0x6d, 0x6f, 0x64, 0x75, 0x6c, 0x65, 0x22, 0x3e, 0x0a, 0x20, 0x20,
156
- 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x0a, 0x20,
157
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x2c, 0x20, 0x68,
158
- 0x2c, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x20, 0x65, 0x66,
159
- 0x66, 0x65, 0x63, 0x74, 0x2c, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74,
160
- 0x65, 0x64, 0x2c, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x2c, 0x20,
161
- 0x75, 0x73, 0x65, 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x20, 0x75,
162
- 0x73, 0x65, 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x2c, 0x20, 0x75, 0x73,
163
- 0x65, 0x52, 0x65, 0x66, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x66,
164
- 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x2e,
165
- 0x6a, 0x73, 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d,
166
- 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
167
- 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f,
168
- 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27,
169
- 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
170
- 0x20, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x73,
171
- 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
172
- 0x20, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x3a, 0x20, 0x22, 0x54,
173
- 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6e,
174
- 0x76, 0x65, 0x72, 0x73, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x62, 0x65,
175
- 0x74, 0x77, 0x65, 0x65, 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20, 0x61,
176
- 0x6e, 0x64, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x61, 0x20,
177
- 0x66, 0x72, 0x69, 0x65, 0x6e, 0x64, 0x6c, 0x79, 0x20, 0x63, 0x68, 0x61,
178
- 0x74, 0x62, 0x6f, 0x74, 0x2e, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e,
179
- 0x64, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x20,
180
- 0x6d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x2e, 0x22, 0x2c, 0x0a,
181
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61,
182
- 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x70, 0x72, 0x6f, 0x6d, 0x70,
183
- 0x74, 0x7d, 0x7d, 0x5c, 0x6e, 0x5c, 0x6e, 0x7b, 0x7b, 0x68, 0x69, 0x73,
184
- 0x74, 0x6f, 0x72, 0x79, 0x7d, 0x7d, 0x5c, 0x6e, 0x7b, 0x7b, 0x63, 0x68,
185
- 0x61, 0x72, 0x7d, 0x7d, 0x3a, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20,
186
- 0x20, 0x20, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d,
187
- 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x6e, 0x61,
188
- 0x6d, 0x65, 0x7d, 0x7d, 0x3a, 0x20, 0x7b, 0x7b, 0x6d, 0x65, 0x73, 0x73,
189
- 0x61, 0x67, 0x65, 0x7d, 0x7d, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20,
190
- 0x20, 0x20, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74,
191
- 0x3a, 0x20, 0x5b, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
192
- 0x74, 0x79, 0x70, 0x65, 0x3a, 0x20, 0x22, 0x63, 0x68, 0x61, 0x74, 0x22,
193
- 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x68, 0x61, 0x72,
194
- 0x3a, 0x20, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x22, 0x2c, 0x0a, 0x20,
195
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x3a, 0x20, 0x22,
196
- 0x55, 0x73, 0x65, 0x72, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
197
- 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
198
- 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69,
199
- 0x67, 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
200
- 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x3a, 0x20,
201
- 0x34, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74,
202
- 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a, 0x20,
203
- 0x30, 0x2e, 0x37, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72,
204
- 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e,
205
- 0x3a, 0x20, 0x32, 0x35, 0x36, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
206
- 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61,
207
- 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x31, 0x2e, 0x31, 0x38, 0x2c, 0x0a, 0x20,
208
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x5f, 0x6b, 0x3a, 0x20,
209
- 0x34, 0x30, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f,
210
- 0x70, 0x5f, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x2c, 0x0a, 0x20, 0x20,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
  0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
212
  0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61,
213
  0x74, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28,
@@ -556,344 +629,525 @@ unsigned char index_html[] = {
556
  0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, 0x20,
557
  0x70, 0x61, 0x72, 0x73, 0x65, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x28, 0x65,
558
  0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c,
559
- 0x75, 0x65, 0x29, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
560
- 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c,
561
- 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66,
562
- 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
563
- 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74,
564
- 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
565
- 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
566
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c,
567
- 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x70, 0x72,
568
- 0x6f, 0x6d, 0x70, 0x74, 0x22, 0x3e, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74,
569
- 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20,
570
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
571
- 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x74, 0x79, 0x70,
572
- 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d,
573
- 0x65, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x22, 0x20, 0x76,
574
- 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73,
575
- 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72,
576
- 0x6f, 0x6d, 0x70, 0x74, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d,
577
- 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b,
578
- 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f,
579
- 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
580
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a,
581
- 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
582
- 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
583
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61,
584
- 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x75, 0x73, 0x65,
585
- 0x72, 0x22, 0x3e, 0x55, 0x73, 0x65, 0x72, 0x20, 0x6e, 0x61, 0x6d, 0x65,
586
- 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20,
587
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
588
- 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22,
589
- 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22,
590
- 0x75, 0x73, 0x65, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d,
591
- 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76,
592
- 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x75, 0x73, 0x65, 0x72, 0x7d, 0x22, 0x20,
593
- 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70,
594
- 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d,
595
- 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
596
- 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a,
597
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
598
- 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
599
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62,
600
- 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x62, 0x6f, 0x74, 0x22,
601
- 0x3e, 0x42, 0x6f, 0x74, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3c, 0x2f, 0x6c,
602
- 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
603
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70,
604
- 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78,
605
- 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x63, 0x68, 0x61,
606
- 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b,
607
- 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75,
608
- 0x65, 0x2e, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69,
609
- 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74,
610
- 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x20, 0x2f, 0x3e,
611
- 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
612
- 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20,
613
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69,
614
- 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
615
  0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20,
616
- 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74,
617
- 0x65, 0x22, 0x3e, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x74, 0x65,
618
- 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65,
619
- 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
620
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72,
621
- 0x65, 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c,
622
- 0x61, 0x74, 0x65, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x74,
623
- 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c,
624
- 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f,
625
- 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70,
626
- 0x6c, 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d,
627
- 0x34, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b,
628
- 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f,
629
- 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
630
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a,
631
- 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
632
- 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
633
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61,
634
- 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d,
635
- 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, 0x43, 0x68, 0x61, 0x74, 0x20,
636
- 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x20, 0x74, 0x65, 0x6d, 0x70,
637
- 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e,
638
- 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
639
- 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61,
640
- 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74,
641
- 0x65, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x68, 0x69, 0x73,
642
- 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65,
643
- 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73,
644
- 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65,
645
- 0x2e, 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70,
646
- 0x6c, 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d,
647
- 0x31, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b,
648
- 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f,
649
- 0x6e, 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
650
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a,
651
  0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
652
- 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
653
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61,
654
- 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d,
655
- 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x3e, 0x54, 0x65,
656
- 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3c, 0x2f, 0x6c,
657
- 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
658
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70,
659
- 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e,
660
- 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70,
661
- 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x20, 0x6d, 0x69, 0x6e,
662
- 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22,
663
- 0x31, 0x2e, 0x30, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3d, 0x22, 0x30,
664
- 0x2e, 0x30, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x74,
665
- 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x20,
666
- 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, 0x72,
667
- 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65,
668
- 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x7d, 0x22, 0x20,
669
- 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70,
670
- 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c,
671
- 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
672
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73,
673
- 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
674
- 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x65,
675
- 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61,
 
 
 
 
 
 
 
676
  0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
677
- 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20,
 
 
 
 
 
 
678
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
679
  0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
680
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65,
681
- 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x6e, 0x50, 0x72, 0x65, 0x64,
682
- 0x69, 0x63, 0x74, 0x22, 0x3e, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74,
683
- 0x69, 0x6f, 0x6e, 0x73, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e,
684
- 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
685
- 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79,
686
- 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69,
687
- 0x64, 0x3d, 0x22, 0x6e, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x22,
688
- 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x31, 0x22, 0x20, 0x6d, 0x61, 0x78,
689
- 0x3d, 0x22, 0x32, 0x30, 0x34, 0x38, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70,
690
- 0x3d, 0x22, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x6e,
691
- 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x22, 0x20, 0x76, 0x61,
692
- 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d,
693
- 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72,
694
- 0x65, 0x64, 0x69, 0x63, 0x74, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e,
695
- 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65,
696
- 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x7d,
697
- 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
698
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e,
699
- 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c,
700
- 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74,
701
- 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20,
702
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64,
703
- 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
704
  0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20,
705
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
706
  0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d,
707
- 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61,
708
- 0x6c, 0x74, 0x79, 0x22, 0x3e, 0x50, 0x65, 0x6e, 0x61, 0x6c, 0x69, 0x7a,
709
- 0x65, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x20, 0x73, 0x65, 0x71,
710
- 0x75, 0x65, 0x6e, 0x63, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711
  0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
712
- 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74,
713
- 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20,
714
- 0x69, 0x64, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70,
715
- 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d,
716
- 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x32,
717
- 0x2e, 0x30, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3d, 0x22, 0x30, 0x2e,
718
- 0x30, 0x31, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x72, 0x65,
719
- 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79,
720
- 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70,
721
- 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e,
722
- 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c,
723
- 0x74, 0x79, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74,
724
- 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72,
725
- 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726
  0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
727
- 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x70,
728
- 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e,
729
- 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c,
730
- 0x74, 0x79, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20,
731
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
732
- 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
733
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
734
  0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
735
- 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f,
736
- 0x72, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61,
737
- 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x3e, 0x43, 0x6f, 0x6e, 0x73, 0x69, 0x64,
738
- 0x65, 0x72, 0x20, 0x4e, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x73, 0x20,
739
- 0x66, 0x6f, 0x72, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x69, 0x7a, 0x65,
740
- 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20,
741
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
742
- 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22,
743
- 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x72,
744
- 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e,
745
- 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x30, 0x2e, 0x30, 0x22, 0x20,
746
- 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x32, 0x30, 0x34, 0x38, 0x22, 0x20, 0x6e,
747
- 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f,
748
- 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75,
749
- 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e,
750
- 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74,
751
- 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x22, 0x20, 0x6f, 0x6e,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752
  0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61,
753
- 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61,
754
- 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
755
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61,
756
- 0x6e, 0x3e, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76,
757
- 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f,
758
- 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61,
759
- 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
760
- 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a, 0x20,
761
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66,
762
- 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20,
763
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x6f, 0x72, 0x6d, 0x3e,
764
- 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20,
765
- 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x70, 0x6f,
766
- 0x6f, 0x72, 0x20, 0x6d, 0x61, 0x6e, 0x73, 0x20, 0x6d, 0x61, 0x72, 0x6b,
767
- 0x64, 0x6f, 0x77, 0x6e, 0x20, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65,
768
- 0x6d, 0x65, 0x6e, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
769
- 0x73, 0x74, 0x20, 0x4d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x69,
770
- 0x73, 0x68, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
771
- 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
772
- 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x64, 0x20, 0x3d, 0x20,
773
- 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x74, 0x65, 0x78, 0x74, 0x0a,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70,
775
- 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x23, 0x7b, 0x31, 0x2c, 0x36,
776
- 0x7d, 0x20, 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f, 0x67, 0x69, 0x6d, 0x2c,
777
- 0x20, 0x27, 0x3c, 0x68, 0x33, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x68, 0x33,
778
- 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
779
- 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x2a,
780
- 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x5c, 0x2a, 0x2f,
781
- 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e,
782
- 0x24, 0x31, 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27,
783
  0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72,
784
- 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x5f, 0x28, 0x2e,
785
- 0x2a, 0x3f, 0x29, 0x5f, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73,
786
- 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x73, 0x74,
787
- 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
788
- 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65,
789
- 0x28, 0x2f, 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x2f,
790
- 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f,
791
- 0x65, 0x6d, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
792
  0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f,
793
- 0x5f, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27,
794
- 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x65, 0x6d, 0x3e, 0x27,
795
- 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72,
796
- 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x60, 0x60, 0x2e,
797
- 0x2a, 0x3f, 0x5c, 0x6e, 0x28, 0x5b, 0x5c, 0x73, 0x5c, 0x53, 0x5d, 0x2a,
798
- 0x3f, 0x29, 0x60, 0x60, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x70,
799
- 0x72, 0x65, 0x3e, 0x3c, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x24, 0x31, 0x3c,
800
- 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x3c, 0x2f, 0x70, 0x72, 0x65, 0x3e,
801
- 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e,
802
- 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x28, 0x2e,
803
- 0x2a, 0x3f, 0x29, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x63, 0x6f,
804
- 0x64, 0x65, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e,
805
- 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e,
806
- 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x6e, 0x2f,
807
- 0x67, 0x69, 0x6d, 0x2c, 0x20, 0x27, 0x3c, 0x62, 0x72, 0x20, 0x2f, 0x3e,
808
- 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
809
- 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x3c, 0x73,
810
- 0x70, 0x61, 0x6e, 0x20, 0x64, 0x61, 0x6e, 0x67, 0x65, 0x72, 0x6f, 0x75,
811
- 0x73, 0x6c, 0x79, 0x53, 0x65, 0x74, 0x49, 0x6e, 0x6e, 0x65, 0x72, 0x48,
812
- 0x54, 0x4d, 0x4c, 0x3d, 0x24, 0x7b, 0x7b, 0x20, 0x5f, 0x5f, 0x68, 0x74,
813
- 0x6d, 0x6c, 0x3a, 0x20, 0x6d, 0x64, 0x20, 0x7d, 0x7d, 0x20, 0x2f, 0x3e,
814
- 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20,
815
- 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x4d, 0x6f, 0x64,
816
- 0x65, 0x6c, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
817
- 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61,
818
- 0x6d, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
819
- 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x6c, 0x6c, 0x61, 0x6d,
820
- 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65,
821
- 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
822
  0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60,
823
- 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x2f, 0x3e, 0x60, 0x0a, 0x20, 0x20, 0x20,
824
- 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
825
  0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a,
826
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61,
827
- 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
828
- 0x20, 0x24, 0x7b, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74,
829
- 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, 0x65, 0x64,
830
- 0x69, 0x63, 0x74, 0x65, 0x64, 0x5f, 0x70, 0x65, 0x72, 0x5f, 0x74, 0x6f,
831
- 0x6b, 0x65, 0x6e, 0x5f, 0x6d, 0x73, 0x2e, 0x74, 0x6f, 0x46, 0x69, 0x78,
832
- 0x65, 0x64, 0x28, 0x29, 0x7d, 0x6d, 0x73, 0x20, 0x70, 0x65, 0x72, 0x20,
833
- 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x2c, 0x20, 0x24, 0x7b, 0x6c, 0x6c, 0x61,
834
- 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75,
835
- 0x65, 0x2e, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x65, 0x64, 0x5f,
836
- 0x70, 0x65, 0x72, 0x5f, 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x2e, 0x74,
837
- 0x6f, 0x46, 0x69, 0x78, 0x65, 0x64, 0x28, 0x32, 0x29, 0x7d, 0x20, 0x74,
838
- 0x6f, 0x6b, 0x65, 0x6e, 0x73, 0x20, 0x70, 0x65, 0x72, 0x20, 0x73, 0x65,
839
- 0x63, 0x6f, 0x6e, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
840
- 0x20, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20,
841
- 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a,
842
- 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e,
843
- 0x20, 0x41, 0x70, 0x70, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x29, 0x20,
844
- 0x7b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74,
845
- 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20,
846
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x20, 0x69,
847
- 0x64, 0x3d, 0x22, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e, 0x65, 0x72,
848
- 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
849
- 0x20, 0x3c, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x3e, 0x0a, 0x20, 0x20,
850
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x68,
851
- 0x31, 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x3c,
852
- 0x2f, 0x68, 0x31, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
853
- 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x3e,
854
- 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
855
- 0x3c, 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x6f,
856
- 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
857
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24, 0x7b, 0x63,
858
- 0x68, 0x61, 0x74, 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x76,
859
- 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3f, 0x20, 0x43, 0x68, 0x61, 0x74, 0x4c,
860
- 0x6f, 0x67, 0x20, 0x3a, 0x20, 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x46,
861
- 0x6f, 0x72, 0x6d, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
862
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x6d, 0x61, 0x69, 0x6e,
863
- 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
864
- 0x20, 0x3c, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x64,
865
- 0x3d, 0x22, 0x77, 0x72, 0x69, 0x74, 0x65, 0x22, 0x3e, 0x0a, 0x20, 0x20,
866
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24,
867
- 0x7b, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x49, 0x6e, 0x70, 0x75,
868
- 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
869
- 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f,
870
- 0x6e, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
871
- 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x3e, 0x0a, 0x20,
 
 
 
 
 
 
 
 
 
 
 
 
 
872
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
873
- 0x70, 0x3e, 0x3c, 0x24, 0x7b, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x47, 0x65,
874
- 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x49, 0x6e, 0x66, 0x6f,
875
- 0x7d, 0x20, 0x2f, 0x3e, 0x3c, 0x2f, 0x70, 0x3e, 0x0a, 0x20, 0x20, 0x20,
876
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x70, 0x3e,
877
- 0x50, 0x6f, 0x77, 0x65, 0x72, 0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x3c,
878
- 0x61, 0x20, 0x68, 0x72, 0x65, 0x66, 0x3d, 0x22, 0x68, 0x74, 0x74, 0x70,
879
- 0x73, 0x3a, 0x2f, 0x2f, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63,
880
- 0x6f, 0x6d, 0x2f, 0x67, 0x67, 0x65, 0x72, 0x67, 0x61, 0x6e, 0x6f, 0x76,
881
- 0x2f, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x22, 0x3e,
882
- 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x3c, 0x2f, 0x61,
883
- 0x3e, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x3c, 0x61, 0x20, 0x68, 0x72, 0x65,
884
- 0x66, 0x3d, 0x22, 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f, 0x2f, 0x67,
885
- 0x67, 0x6d, 0x6c, 0x2e, 0x61, 0x69, 0x22, 0x3e, 0x67, 0x67, 0x6d, 0x6c,
886
- 0x2e, 0x61, 0x69, 0x3c, 0x2f, 0x61, 0x3e, 0x2e, 0x3c, 0x2f, 0x70, 0x3e,
887
- 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
888
- 0x2f, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x3e, 0x0a, 0x20, 0x20, 0x20,
889
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a,
890
- 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20,
891
- 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6e, 0x64,
892
- 0x65, 0x72, 0x28, 0x68, 0x28, 0x41, 0x70, 0x70, 0x29, 0x2c, 0x20, 0x64,
893
- 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x62, 0x6f, 0x64, 0x79,
894
- 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x63, 0x72, 0x69, 0x70,
895
- 0x74, 0x3e, 0x0a, 0x3c, 0x2f, 0x68, 0x65, 0x61, 0x64, 0x3e, 0x0a, 0x0a,
896
- 0x3c, 0x62, 0x6f, 0x64, 0x79, 0x3e, 0x0a, 0x3c, 0x2f, 0x62, 0x6f, 0x64,
897
- 0x79, 0x3e, 0x0a, 0x0a, 0x3c, 0x2f, 0x68, 0x74, 0x6d, 0x6c, 0x3e, 0x0a
898
  };
899
- unsigned int index_html_len = 10752;
 
111
  0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20,
112
  0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72,
113
  0x67, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
114
+ 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x69, 0x65, 0x6c, 0x64,
115
+ 0x73, 0x65, 0x74, 0x2e, 0x74, 0x77, 0x6f, 0x20, 0x7b, 0x0a, 0x20, 0x20,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a,
117
+ 0x20, 0x67, 0x72, 0x69, 0x64, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
118
+ 0x20, 0x67, 0x72, 0x69, 0x64, 0x2d, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61,
119
+ 0x74, 0x65, 0x3a, 0x20, 0x22, 0x61, 0x20, 0x61, 0x22, 0x3b, 0x0a, 0x20,
120
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x61, 0x70, 0x3a, 0x20, 0x31, 0x65,
121
+ 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
122
+ 0x20, 0x20, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x2e, 0x74,
123
+ 0x68, 0x72, 0x65, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
124
+ 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x67, 0x72,
125
+ 0x69, 0x64, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x72,
126
+ 0x69, 0x64, 0x2d, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3a,
127
+ 0x20, 0x22, 0x61, 0x20, 0x61, 0x20, 0x61, 0x22, 0x3b, 0x0a, 0x20, 0x20,
128
+ 0x20, 0x20, 0x20, 0x20, 0x67, 0x61, 0x70, 0x3a, 0x20, 0x31, 0x65, 0x6d,
129
  0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20,
130
+ 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x73, 0x20, 0x7b, 0x0a, 0x20,
131
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x3a,
132
+ 0x20, 0x31, 0x70, 0x78, 0x20, 0x73, 0x6f, 0x6c, 0x69, 0x64, 0x20, 0x23,
133
+ 0x61, 0x61, 0x61, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62,
134
+ 0x6f, 0x72, 0x64, 0x65, 0x72, 0x2d, 0x72, 0x61, 0x64, 0x69, 0x75, 0x73,
135
+ 0x3a, 0x20, 0x34, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
136
+ 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x2e,
137
+ 0x35, 0x65, 0x6d, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x20, 0x30, 0x3b,
138
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69,
139
+ 0x6e, 0x2d, 0x74, 0x6f, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x65, 0x6d,
140
+ 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20,
141
+ 0x20, 0x73, 0x75, 0x6d, 0x6d, 0x61, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20,
142
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x77, 0x65,
143
+ 0x69, 0x67, 0x68, 0x74, 0x3a, 0x20, 0x62, 0x6f, 0x6c, 0x64, 0x3b, 0x0a,
144
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e,
145
+ 0x3a, 0x20, 0x2d, 0x30, 0x2e, 0x35, 0x65, 0x6d, 0x20, 0x2d, 0x30, 0x2e,
146
+ 0x35, 0x65, 0x6d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
147
+ 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x2e,
148
+ 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
149
+ 0x75, 0x72, 0x73, 0x6f, 0x72, 0x3a, 0x20, 0x70, 0x6f, 0x69, 0x6e, 0x74,
150
+ 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20,
151
+ 0x20, 0x20, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x73, 0x5b, 0x6f,
152
+ 0x70, 0x65, 0x6e, 0x5d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
153
+ 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x30, 0x2e,
154
+ 0x35, 0x65, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a,
155
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65,
156
+ 0x61, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61,
157
+ 0x64, 0x64, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x35, 0x70, 0x78, 0x3b, 0x0a,
158
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6c, 0x65, 0x78, 0x2d, 0x67,
159
+ 0x72, 0x6f, 0x77, 0x3a, 0x20, 0x31, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
160
+ 0x20, 0x20, 0x77, 0x69, 0x64, 0x74, 0x68, 0x3a, 0x20, 0x31, 0x30, 0x30,
161
+ 0x25, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
162
+ 0x20, 0x20, 0x70, 0x72, 0x65, 0x20, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x7b,
163
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c,
164
+ 0x61, 0x79, 0x3a, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x3b, 0x0a, 0x20,
165
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x61, 0x63, 0x6b, 0x67, 0x72, 0x6f,
166
+ 0x75, 0x6e, 0x64, 0x2d, 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23,
167
+ 0x32, 0x32, 0x32, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
168
+ 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x64, 0x64, 0x64, 0x3b, 0x0a,
169
+ 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
170
+ 0x64, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66,
171
+ 0x6f, 0x6e, 0x74, 0x2d, 0x66, 0x61, 0x6d, 0x69, 0x6c, 0x79, 0x3a, 0x20,
172
+ 0x6d, 0x6f, 0x6e, 0x6f, 0x73, 0x70, 0x61, 0x63, 0x65, 0x3b, 0x0a, 0x20,
173
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x61, 0x64, 0x64, 0x69, 0x6e, 0x67,
174
+ 0x3a, 0x20, 0x30, 0x2e, 0x31, 0x65, 0x6d, 0x20, 0x30, 0x2e, 0x33, 0x65,
175
+ 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x6f, 0x72,
176
+ 0x64, 0x65, 0x72, 0x2d, 0x72, 0x61, 0x64, 0x69, 0x75, 0x73, 0x3a, 0x20,
177
+ 0x33, 0x70, 0x78, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a,
178
+ 0x20, 0x20, 0x20, 0x20, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74,
179
+ 0x20, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
180
+ 0x20, 0x20, 0x20, 0x6d, 0x61, 0x72, 0x67, 0x69, 0x6e, 0x3a, 0x20, 0x30,
181
+ 0x2e, 0x35, 0x65, 0x6d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
182
+ 0x20, 0x20, 0x64, 0x69, 0x73, 0x70, 0x6c, 0x61, 0x79, 0x3a, 0x20, 0x62,
183
+ 0x6c, 0x6f, 0x63, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
184
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2c,
185
  0x20, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a, 0x20, 0x20,
186
+ 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2d, 0x61, 0x6c, 0x69,
187
+ 0x67, 0x6e, 0x3a, 0x20, 0x63, 0x65, 0x6e, 0x74, 0x65, 0x72, 0x3b, 0x0a,
188
+ 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66,
189
+ 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
190
+ 0x20, 0x20, 0x66, 0x6f, 0x6e, 0x74, 0x2d, 0x73, 0x69, 0x7a, 0x65, 0x3a,
191
+ 0x20, 0x38, 0x30, 0x25, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
192
+ 0x63, 0x6f, 0x6c, 0x6f, 0x72, 0x3a, 0x20, 0x23, 0x38, 0x38, 0x38, 0x3b,
193
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x3c, 0x2f, 0x73,
194
+ 0x74, 0x79, 0x6c, 0x65, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x3c, 0x73, 0x63,
195
+ 0x72, 0x69, 0x70, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x6d,
196
+ 0x6f, 0x64, 0x75, 0x6c, 0x65, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
197
+ 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
198
+ 0x20, 0x20, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x2c, 0x20, 0x68, 0x2c, 0x20,
199
+ 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x20, 0x65, 0x66, 0x66, 0x65,
200
+ 0x63, 0x74, 0x2c, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x75, 0x74, 0x65, 0x64,
201
+ 0x2c, 0x20, 0x72, 0x65, 0x6e, 0x64, 0x65, 0x72, 0x2c, 0x20, 0x75, 0x73,
202
+ 0x65, 0x53, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x20, 0x75, 0x73, 0x65,
203
+ 0x45, 0x66, 0x66, 0x65, 0x63, 0x74, 0x2c, 0x20, 0x75, 0x73, 0x65, 0x52,
204
+ 0x65, 0x66, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f,
205
+ 0x6d, 0x20, 0x27, 0x2f, 0x69, 0x6e, 0x64, 0x65, 0x78, 0x2e, 0x6a, 0x73,
206
+ 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f,
207
+ 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20, 0x7d,
208
+ 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70,
209
+ 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x3b, 0x0a,
210
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x73,
211
+ 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67,
212
+ 0x6e, 0x61, 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
213
+ 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x3a, 0x20, 0x22, 0x54, 0x68, 0x69,
214
+ 0x73, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x63, 0x6f, 0x6e, 0x76, 0x65,
215
+ 0x72, 0x73, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x62, 0x65, 0x74, 0x77,
216
+ 0x65, 0x65, 0x6e, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20, 0x61, 0x6e, 0x64,
217
+ 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x61, 0x20, 0x66, 0x72,
218
+ 0x69, 0x65, 0x6e, 0x64, 0x6c, 0x79, 0x20, 0x63, 0x68, 0x61, 0x74, 0x62,
219
+ 0x6f, 0x74, 0x2e, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x64, 0x20,
220
+ 0x69, 0x6e, 0x20, 0x73, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x20, 0x6d, 0x61,
221
+ 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x2e, 0x22, 0x2c, 0x0a, 0x20, 0x20,
222
+ 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65,
223
+ 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x7d,
224
+ 0x7d, 0x5c, 0x6e, 0x5c, 0x6e, 0x7b, 0x7b, 0x68, 0x69, 0x73, 0x74, 0x6f,
225
+ 0x72, 0x79, 0x7d, 0x7d, 0x5c, 0x6e, 0x7b, 0x7b, 0x63, 0x68, 0x61, 0x72,
226
+ 0x7d, 0x7d, 0x3a, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
227
+ 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c,
228
+ 0x61, 0x74, 0x65, 0x3a, 0x20, 0x22, 0x7b, 0x7b, 0x6e, 0x61, 0x6d, 0x65,
229
+ 0x7d, 0x7d, 0x3a, 0x20, 0x7b, 0x7b, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67,
230
+ 0x65, 0x7d, 0x7d, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
231
+ 0x74, 0x72, 0x61, 0x6e, 0x73, 0x63, 0x72, 0x69, 0x70, 0x74, 0x3a, 0x20,
232
+ 0x5b, 0x5d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x79,
233
+ 0x70, 0x65, 0x3a, 0x20, 0x22, 0x63, 0x68, 0x61, 0x74, 0x22, 0x2c, 0x0a,
234
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x68, 0x61, 0x72, 0x3a, 0x20,
235
+ 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20,
236
+ 0x20, 0x20, 0x20, 0x75, 0x73, 0x65, 0x72, 0x3a, 0x20, 0x22, 0x55, 0x73,
237
+ 0x65, 0x72, 0x22, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a,
238
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70,
239
+ 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e,
240
+ 0x61, 0x6c, 0x28, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6e,
241
+ 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x3a, 0x20, 0x34, 0x30,
242
+ 0x30, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x65, 0x6d,
243
+ 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a, 0x20, 0x30, 0x2e,
244
+ 0x37, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x70,
245
+ 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61, 0x73, 0x74, 0x5f, 0x6e, 0x3a, 0x20,
246
+ 0x32, 0x35, 0x36, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x30, 0x20, 0x3d, 0x20,
247
+ 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x20, 0x70, 0x65, 0x6e, 0x61,
248
+ 0x6c, 0x74, 0x79, 0x2c, 0x20, 0x2d, 0x31, 0x20, 0x3d, 0x20, 0x63, 0x6f,
249
+ 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20, 0x73, 0x69, 0x7a, 0x65, 0x0a, 0x20,
250
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f,
251
+ 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x31, 0x2e, 0x31,
252
+ 0x38, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x31, 0x2e, 0x30, 0x20, 0x3d, 0x20,
253
+ 0x64, 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20,
254
+ 0x20, 0x20, 0x20, 0x74, 0x6f, 0x70, 0x5f, 0x6b, 0x3a, 0x20, 0x34, 0x30,
255
+ 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x3c, 0x3d, 0x20, 0x30, 0x20, 0x74, 0x6f,
256
+ 0x20, 0x75, 0x73, 0x65, 0x20, 0x76, 0x6f, 0x63, 0x61, 0x62, 0x20, 0x73,
257
+ 0x69, 0x7a, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x6f,
258
+ 0x70, 0x5f, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x35, 0x2c, 0x20, 0x2f, 0x2f,
259
+ 0x20, 0x31, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62,
260
+ 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x66,
261
+ 0x73, 0x5f, 0x7a, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x2f, 0x2f,
262
+ 0x20, 0x31, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69, 0x73, 0x61, 0x62,
263
+ 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x79,
264
+ 0x70, 0x69, 0x63, 0x61, 0x6c, 0x5f, 0x70, 0x3a, 0x20, 0x31, 0x2e, 0x30,
265
+ 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x31, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64,
266
+ 0x69, 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20,
267
+ 0x20, 0x20, 0x70, 0x72, 0x65, 0x73, 0x65, 0x6e, 0x63, 0x65, 0x5f, 0x70,
268
+ 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c,
269
+ 0x20, 0x2f, 0x2f, 0x20, 0x30, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69,
270
+ 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
271
+ 0x20, 0x66, 0x72, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x79, 0x5f, 0x70,
272
+ 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c,
273
+ 0x20, 0x2f, 0x2f, 0x20, 0x30, 0x2e, 0x30, 0x20, 0x3d, 0x20, 0x64, 0x69,
274
+ 0x73, 0x61, 0x62, 0x6c, 0x65, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
275
+ 0x20, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x3a, 0x20, 0x30,
276
+ 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x30, 0x2f, 0x31, 0x2f, 0x32, 0x0a, 0x20,
277
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61,
278
+ 0x74, 0x5f, 0x74, 0x61, 0x75, 0x3a, 0x20, 0x35, 0x2c, 0x20, 0x2f, 0x2f,
279
+ 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x65, 0x6e, 0x74, 0x72,
280
+ 0x6f, 0x70, 0x79, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x69,
281
+ 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f, 0x65, 0x74, 0x61, 0x3a, 0x20,
282
+ 0x30, 0x2e, 0x31, 0x2c, 0x20, 0x2f, 0x2f, 0x20, 0x6c, 0x65, 0x61, 0x72,
283
+ 0x6e, 0x69, 0x6e, 0x67, 0x20, 0x72, 0x61, 0x74, 0x65, 0x0a, 0x20, 0x20,
284
  0x20, 0x20, 0x7d, 0x29, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
285
  0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61,
286
  0x74, 0x73, 0x20, 0x3d, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x28,
 
629
  0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, 0x20,
630
  0x70, 0x61, 0x72, 0x73, 0x65, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x28, 0x65,
631
  0x6c, 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c,
632
+ 0x75, 0x65, 0x29, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
633
+ 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65,
634
+ 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74, 0x20, 0x3d, 0x20,
635
+ 0x28, 0x65, 0x6c, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x70, 0x61, 0x72, 0x61,
636
+ 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3d, 0x20, 0x7b,
637
+ 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76,
638
+ 0x61, 0x6c, 0x75, 0x65, 0x2c, 0x20, 0x5b, 0x65, 0x6c, 0x2e, 0x74, 0x61,
639
+ 0x72, 0x67, 0x65, 0x74, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x5d, 0x3a, 0x20,
640
+ 0x4d, 0x61, 0x74, 0x68, 0x2e, 0x66, 0x6c, 0x6f, 0x6f, 0x72, 0x28, 0x70,
641
+ 0x61, 0x72, 0x73, 0x65, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x28, 0x65, 0x6c,
642
+ 0x2e, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75,
643
+ 0x65, 0x29, 0x29, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
644
+ 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x46, 0x6c, 0x6f, 0x61, 0x74,
645
+ 0x46, 0x69, 0x65, 0x6c, 0x64, 0x20, 0x3d, 0x20, 0x28, 0x7b, 0x6c, 0x61,
646
+ 0x62, 0x65, 0x6c, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x2c, 0x20, 0x6d, 0x69,
647
+ 0x6e, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x73, 0x74, 0x65,
648
+ 0x70, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x29, 0x20, 0x3d,
649
+ 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
650
+ 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60,
651
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
652
+ 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653
  0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20,
654
+ 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d,
655
+ 0x22, 0x3e, 0x24, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x7d, 0x3c, 0x2f,
656
+ 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
657
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75,
658
+ 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67,
659
+ 0x65, 0x22, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d,
660
+ 0x65, 0x7d, 0x22, 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x24, 0x7b, 0x6d,
661
+ 0x69, 0x6e, 0x7d, 0x22, 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x24, 0x7b,
662
+ 0x6d, 0x61, 0x78, 0x7d, 0x22, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3d, 0x22,
663
+ 0x24, 0x7b, 0x73, 0x74, 0x65, 0x70, 0x7d, 0x22, 0x20, 0x6e, 0x61, 0x6d,
664
+ 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x20,
665
+ 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x76, 0x61, 0x6c,
666
+ 0x75, 0x65, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74,
667
+ 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x50, 0x61, 0x72,
668
+ 0x61, 0x6d, 0x73, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x7d, 0x20, 0x2f, 0x3e,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669
  0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
670
+ 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24, 0x7b, 0x76, 0x61, 0x6c,
671
+ 0x75, 0x65, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20,
672
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64,
673
+ 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
674
+ 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a, 0x0a,
675
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
676
+ 0x49, 0x6e, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x20, 0x3d, 0x20, 0x28,
677
+ 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x2c,
678
+ 0x20, 0x6d, 0x69, 0x6e, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2c, 0x20,
679
+ 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
680
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74,
681
+ 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20, 0x20,
682
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76,
683
+ 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
684
+ 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72,
685
+ 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x3e, 0x24,
686
+ 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x7d, 0x3c, 0x2f, 0x6c, 0x61, 0x62,
687
+ 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
688
+ 0x20, 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74,
689
+ 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x22, 0x20,
690
+ 0x69, 0x64, 0x3d, 0x22, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x22,
691
+ 0x20, 0x6d, 0x69, 0x6e, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x69, 0x6e, 0x7d,
692
+ 0x22, 0x20, 0x6d, 0x61, 0x78, 0x3d, 0x22, 0x24, 0x7b, 0x6d, 0x61, 0x78,
693
+ 0x7d, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x6e,
694
+ 0x61, 0x6d, 0x65, 0x7d, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d,
695
+ 0x22, 0x24, 0x7b, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x22, 0x20, 0x6f,
696
+ 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64,
697
+ 0x61, 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74,
698
+ 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
699
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x24,
700
+ 0x7b, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x7d, 0x3c, 0x2f, 0x73, 0x70, 0x61,
701
  0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
702
+ 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
703
+ 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
704
+ 0x7d, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
705
+ 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a, 0x20,
706
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x72, 0x6d,
707
+ 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
708
+ 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20,
709
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
710
  0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
711
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65,
712
+ 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x70, 0x72, 0x6f, 0x6d, 0x70,
713
+ 0x74, 0x22, 0x3e, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x3c, 0x2f, 0x6c,
714
+ 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
715
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78,
716
+ 0x74, 0x61, 0x72, 0x65, 0x61, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22,
717
+ 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22,
718
+ 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75,
719
+ 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e,
720
+ 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70,
721
+ 0x74, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x34, 0x20, 0x6f,
722
+ 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64,
723
+ 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x7d, 0x2f,
724
+ 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
725
+ 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20,
726
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65,
727
+ 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20,
728
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64,
729
+ 0x73, 0x65, 0x74, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d, 0x22, 0x74,
730
+ 0x77, 0x6f, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 
 
 
 
731
  0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20,
732
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
733
  0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d,
734
+ 0x22, 0x75, 0x73, 0x65, 0x72, 0x22, 0x3e, 0x55, 0x73, 0x65, 0x72, 0x20,
735
+ 0x6e, 0x61, 0x6d, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e,
736
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
737
+ 0x20, 0x20, 0x20, 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79,
738
+ 0x70, 0x65, 0x3d, 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61,
739
+ 0x6d, 0x65, 0x3d, 0x22, 0x75, 0x73, 0x65, 0x72, 0x22, 0x20, 0x76, 0x61,
740
+ 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69,
741
+ 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x75, 0x73, 0x65,
742
+ 0x72, 0x7d, 0x22, 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d,
743
+ 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73,
744
+ 0x69, 0x6f, 0x6e, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
745
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69,
746
+ 0x76, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
747
+ 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20,
748
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
749
+ 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22,
750
+ 0x62, 0x6f, 0x74, 0x22, 0x3e, 0x42, 0x6f, 0x74, 0x20, 0x6e, 0x61, 0x6d,
751
+ 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20,
752
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
753
+ 0x3c, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d,
754
+ 0x22, 0x74, 0x65, 0x78, 0x74, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d,
755
+ 0x22, 0x63, 0x68, 0x61, 0x72, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65,
756
+ 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e,
757
+ 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x63, 0x68, 0x61, 0x72, 0x7d, 0x22,
758
+ 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75,
759
+ 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e,
760
+ 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
761
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a,
762
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f,
763
+ 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x0a, 0x20,
764
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69,
765
+ 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
766
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76,
767
  0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
768
+ 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x20, 0x66,
769
+ 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65,
770
+ 0x22, 0x3e, 0x50, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x74, 0x65, 0x6d,
771
+ 0x70, 0x6c, 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c,
772
+ 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
773
+ 0x20, 0x20, 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65,
774
+ 0x61, 0x20, 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61,
775
+ 0x74, 0x65, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x74, 0x65,
776
+ 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75,
777
+ 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e,
778
+ 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x6c,
779
+ 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x34,
780
+ 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75,
781
+ 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e,
782
+ 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
783
+ 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x0a,
784
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
785
+ 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
786
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62,
787
+ 0x65, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70,
788
+ 0x6c, 0x61, 0x74, 0x65, 0x22, 0x3e, 0x43, 0x68, 0x61, 0x74, 0x20, 0x68,
789
+ 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x20, 0x74, 0x65, 0x6d, 0x70, 0x6c,
790
+ 0x61, 0x74, 0x65, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a,
791
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
792
+ 0x20, 0x20, 0x3c, 0x74, 0x65, 0x78, 0x74, 0x61, 0x72, 0x65, 0x61, 0x20,
793
+ 0x69, 0x64, 0x3d, 0x22, 0x74, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65,
794
+ 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x68, 0x69, 0x73, 0x74,
795
+ 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c, 0x61, 0x74, 0x65, 0x22,
796
+ 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x24, 0x7b, 0x73, 0x65,
797
+ 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e,
798
+ 0x68, 0x69, 0x73, 0x74, 0x6f, 0x72, 0x79, 0x54, 0x65, 0x6d, 0x70, 0x6c,
799
+ 0x61, 0x74, 0x65, 0x7d, 0x22, 0x20, 0x72, 0x6f, 0x77, 0x73, 0x3d, 0x31,
800
+ 0x20, 0x6f, 0x6e, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75,
801
+ 0x70, 0x64, 0x61, 0x74, 0x65, 0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e,
802
+ 0x7d, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
803
+ 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20,
804
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66,
805
+ 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x0a, 0x20, 0x20,
806
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69, 0x65,
807
+ 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x3d,
808
+ 0x22, 0x74, 0x77, 0x6f, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
809
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x49, 0x6e, 0x74,
810
+ 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c,
811
+ 0x3a, 0x20, 0x22, 0x50, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x69, 0x6f,
812
+ 0x6e, 0x73, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x32, 0x30,
813
+ 0x34, 0x38, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x2d, 0x31, 0x2c,
814
+ 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x6e, 0x5f, 0x70, 0x72,
815
+ 0x65, 0x64, 0x69, 0x63, 0x74, 0x22, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75,
816
+ 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61,
817
+ 0x6c, 0x75, 0x65, 0x2e, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63,
818
+ 0x74, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
819
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74,
820
+ 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c,
821
+ 0x3a, 0x20, 0x22, 0x54, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75,
822
+ 0x72, 0x65, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e,
823
+ 0x35, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c,
824
+ 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74, 0x65, 0x6d, 0x70,
825
+ 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x22, 0x2c, 0x20, 0x73, 0x74,
826
+ 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61,
827
+ 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e,
828
+ 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x65, 0x6d, 0x70, 0x65, 0x72,
829
+ 0x61, 0x74, 0x75, 0x72, 0x65, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20,
830
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46,
831
+ 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c,
832
+ 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x50, 0x65, 0x6e, 0x61, 0x6c,
833
+ 0x69, 0x7a, 0x65, 0x20, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x20, 0x73,
834
+ 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63, 0x65, 0x22, 0x2c, 0x20, 0x6d, 0x61,
835
+ 0x78, 0x3a, 0x20, 0x32, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a,
836
+ 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20,
837
+ 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e, 0x61,
838
+ 0x6c, 0x74, 0x79, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20,
839
+ 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a,
840
+ 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75,
841
+ 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x70, 0x65, 0x6e,
842
+ 0x61, 0x6c, 0x74, 0x79, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
843
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x49, 0x6e,
844
+ 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65,
845
+ 0x6c, 0x3a, 0x20, 0x22, 0x43, 0x6f, 0x6e, 0x73, 0x69, 0x64, 0x65, 0x72,
846
+ 0x20, 0x4e, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x73, 0x20, 0x66, 0x6f,
847
+ 0x72, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x69, 0x7a, 0x65, 0x22, 0x2c,
848
+ 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x32, 0x30, 0x34, 0x38, 0x2c, 0x20,
849
+ 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65,
850
+ 0x3a, 0x20, 0x22, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61,
851
+ 0x73, 0x74, 0x5f, 0x6e, 0x22, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65,
852
+ 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c,
853
+ 0x75, 0x65, 0x2e, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x5f, 0x6c, 0x61,
854
+ 0x73, 0x74, 0x5f, 0x6e, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
855
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x49, 0x6e,
856
+ 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65,
857
+ 0x6c, 0x3a, 0x20, 0x22, 0x54, 0x6f, 0x70, 0x2d, 0x4b, 0x20, 0x73, 0x61,
858
+ 0x6d, 0x70, 0x6c, 0x69, 0x6e, 0x67, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78,
859
+ 0x3a, 0x20, 0x31, 0x30, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20,
860
+ 0x2d, 0x31, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74,
861
+ 0x6f, 0x70, 0x5f, 0x6b, 0x22, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65,
862
+ 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c,
863
+ 0x75, 0x65, 0x2e, 0x74, 0x6f, 0x70, 0x5f, 0x6b, 0x7d, 0x29, 0x7d, 0x0a,
864
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
865
+ 0x24, 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64,
866
+ 0x28, 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, 0x6f,
867
+ 0x70, 0x2d, 0x50, 0x20, 0x73, 0x61, 0x6d, 0x70, 0x6c, 0x69, 0x6e, 0x67,
868
+ 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c,
869
+ 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e,
870
+ 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74, 0x6f, 0x70, 0x5f, 0x70, 0x22,
871
+ 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31,
872
+ 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72,
873
+ 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x6f,
874
+ 0x70, 0x5f, 0x70, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
875
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64,
876
+ 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
877
+ 0x20, 0x20, 0x20, 0x3c, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x73, 0x3e,
878
  0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
879
+ 0x20, 0x3c, 0x73, 0x75, 0x6d, 0x6d, 0x61, 0x72, 0x79, 0x3e, 0x4d, 0x6f,
880
+ 0x72, 0x65, 0x20, 0x6f, 0x70, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x3c, 0x2f,
881
+ 0x73, 0x75, 0x6d, 0x6d, 0x61, 0x72, 0x79, 0x3e, 0x0a, 0x20, 0x20, 0x20,
882
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x69,
883
+ 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73,
884
+ 0x3d, 0x22, 0x74, 0x77, 0x6f, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
885
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b,
886
+ 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b,
887
+ 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, 0x46, 0x53, 0x2d,
888
+ 0x5a, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30,
889
+ 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20,
890
+ 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74, 0x66, 0x73, 0x5f, 0x7a,
891
+ 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30,
892
+ 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61,
893
+ 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74,
894
+ 0x66, 0x73, 0x5f, 0x7a, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
895
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b,
896
+ 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b,
897
+ 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x54, 0x79, 0x70, 0x69,
898
+ 0x63, 0x61, 0x6c, 0x20, 0x50, 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a,
899
+ 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30,
900
+ 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x74,
901
+ 0x79, 0x70, 0x69, 0x63, 0x61, 0x6c, 0x5f, 0x70, 0x22, 0x2c, 0x20, 0x73,
902
+ 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76,
903
+ 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
904
+ 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x74, 0x79, 0x70, 0x69, 0x63,
905
+ 0x61, 0x6c, 0x5f, 0x70, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
906
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b,
907
+ 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b,
908
+ 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x50, 0x72, 0x65, 0x73,
909
+ 0x65, 0x6e, 0x63, 0x65, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79,
910
+ 0x22, 0x2c, 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c,
911
+ 0x20, 0x6d, 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e,
912
+ 0x61, 0x6d, 0x65, 0x3a, 0x20, 0x22, 0x70, 0x72, 0x65, 0x73, 0x65, 0x6e,
913
+ 0x63, 0x65, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x2c,
914
+ 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c,
915
+ 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61,
916
+ 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, 0x65,
917
+ 0x73, 0x65, 0x6e, 0x63, 0x65, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74,
918
+ 0x79, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
919
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46, 0x6c, 0x6f,
920
+ 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c, 0x61, 0x62,
921
+ 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x46, 0x72, 0x65, 0x71, 0x75, 0x65, 0x6e,
922
+ 0x63, 0x79, 0x20, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x2c,
923
+ 0x20, 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d,
924
+ 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d,
925
+ 0x65, 0x3a, 0x20, 0x22, 0x66, 0x72, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x63,
926
+ 0x79, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74, 0x79, 0x22, 0x2c, 0x20,
927
+ 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20,
928
+ 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
929
+ 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x66, 0x72, 0x65, 0x71,
930
+ 0x75, 0x65, 0x6e, 0x63, 0x79, 0x5f, 0x70, 0x65, 0x6e, 0x61, 0x6c, 0x74,
931
+ 0x79, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
932
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64,
933
+ 0x73, 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
934
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x68, 0x72, 0x20, 0x2f, 0x3e, 0x0a,
935
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
936
+ 0x3c, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x65, 0x74, 0x20, 0x63, 0x6c,
937
+ 0x61, 0x73, 0x73, 0x3d, 0x22, 0x74, 0x68, 0x72, 0x65, 0x65, 0x22, 0x3e,
938
  0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
939
+ 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20,
940
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
941
+ 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x3c, 0x69, 0x6e, 0x70,
942
+ 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61, 0x64,
943
+ 0x69, 0x6f, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x6d, 0x69,
944
+ 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c, 0x75,
945
+ 0x65, 0x3d, 0x22, 0x30, 0x22, 0x20, 0x63, 0x68, 0x65, 0x63, 0x6b, 0x65,
946
+ 0x64, 0x3d, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76,
947
+ 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61,
948
+ 0x74, 0x20, 0x3d, 0x3d, 0x20, 0x30, 0x7d, 0x20, 0x6f, 0x6e, 0x69, 0x6e,
949
+ 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65,
950
+ 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74, 0x7d, 0x20, 0x2f,
951
+ 0x3e, 0x20, 0x6e, 0x6f, 0x20, 0x4d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61,
952
+ 0x74, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20, 0x20,
953
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
954
+ 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x3c, 0x69, 0x6e,
955
+ 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72, 0x61,
956
+ 0x64, 0x69, 0x6f, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22, 0x6d,
957
+ 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x22, 0x20, 0x76, 0x61, 0x6c,
958
+ 0x75, 0x65, 0x3d, 0x22, 0x31, 0x22, 0x20, 0x63, 0x68, 0x65, 0x63, 0x6b,
959
+ 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e,
960
+ 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74,
961
+ 0x61, 0x74, 0x20, 0x3d, 0x3d, 0x20, 0x31, 0x7d, 0x20, 0x6f, 0x6e, 0x69,
962
+ 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61, 0x74,
963
+ 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74, 0x7d, 0x20,
964
+ 0x2f, 0x3e, 0x20, 0x4d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20,
965
+ 0x76, 0x31, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a, 0x20,
966
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
967
+ 0x20, 0x20, 0x20, 0x3c, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x3c, 0x69,
968
+ 0x6e, 0x70, 0x75, 0x74, 0x20, 0x74, 0x79, 0x70, 0x65, 0x3d, 0x22, 0x72,
969
+ 0x61, 0x64, 0x69, 0x6f, 0x22, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3d, 0x22,
970
+ 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x22, 0x20, 0x76, 0x61,
971
+ 0x6c, 0x75, 0x65, 0x3d, 0x22, 0x32, 0x22, 0x20, 0x63, 0x68, 0x65, 0x63,
972
+ 0x6b, 0x65, 0x64, 0x3d, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
973
+ 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x6d, 0x69, 0x72, 0x6f, 0x73,
974
+ 0x74, 0x61, 0x74, 0x20, 0x3d, 0x3d, 0x20, 0x32, 0x7d, 0x20, 0x6f, 0x6e,
975
  0x69, 0x6e, 0x70, 0x75, 0x74, 0x3d, 0x24, 0x7b, 0x75, 0x70, 0x64, 0x61,
976
+ 0x74, 0x65, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x49, 0x6e, 0x74, 0x7d,
977
+ 0x20, 0x2f, 0x3e, 0x20, 0x4d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74,
978
+ 0x20, 0x76, 0x32, 0x3c, 0x2f, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3e, 0x0a,
979
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
980
+ 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76, 0x3e, 0x0a, 0x20, 0x20, 0x20,
981
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24,
982
+ 0x7b, 0x46, 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28,
983
+ 0x7b, 0x6c, 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x4d, 0x69, 0x72,
984
+ 0x6f, 0x73, 0x74, 0x61, 0x74, 0x20, 0x74, 0x61, 0x75, 0x22, 0x2c, 0x20,
985
+ 0x6d, 0x61, 0x78, 0x3a, 0x20, 0x31, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6d,
986
+ 0x69, 0x6e, 0x3a, 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d,
987
+ 0x65, 0x3a, 0x20, 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74,
988
+ 0x5f, 0x74, 0x61, 0x75, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a,
989
+ 0x20, 0x30, 0x2e, 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65,
990
+ 0x3a, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c,
991
+ 0x75, 0x65, 0x2e, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f,
992
+ 0x74, 0x61, 0x75, 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
993
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x24, 0x7b, 0x46,
994
+ 0x6c, 0x6f, 0x61, 0x74, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x28, 0x7b, 0x6c,
995
+ 0x61, 0x62, 0x65, 0x6c, 0x3a, 0x20, 0x22, 0x4d, 0x69, 0x72, 0x6f, 0x73,
996
+ 0x74, 0x61, 0x74, 0x20, 0x65, 0x74, 0x61, 0x22, 0x2c, 0x20, 0x6d, 0x61,
997
+ 0x78, 0x3a, 0x20, 0x31, 0x2e, 0x30, 0x2c, 0x20, 0x6d, 0x69, 0x6e, 0x3a,
998
+ 0x20, 0x30, 0x2e, 0x30, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x3a, 0x20,
999
+ 0x22, 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f, 0x65, 0x74,
1000
+ 0x61, 0x22, 0x2c, 0x20, 0x73, 0x74, 0x65, 0x70, 0x3a, 0x20, 0x30, 0x2e,
1001
+ 0x30, 0x31, 0x2c, 0x20, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x20, 0x70,
1002
+ 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e,
1003
+ 0x6d, 0x69, 0x72, 0x6f, 0x73, 0x74, 0x61, 0x74, 0x5f, 0x65, 0x74, 0x61,
1004
+ 0x7d, 0x29, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1005
+ 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73,
1006
+ 0x65, 0x74, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1007
+ 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x73, 0x3e,
1008
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x66,
1009
+ 0x6f, 0x72, 0x6d, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60,
1010
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x2f,
1011
+ 0x2f, 0x20, 0x70, 0x6f, 0x6f, 0x72, 0x20, 0x6d, 0x61, 0x6e, 0x73, 0x20,
1012
+ 0x6d, 0x61, 0x72, 0x6b, 0x64, 0x6f, 0x77, 0x6e, 0x20, 0x72, 0x65, 0x70,
1013
+ 0x6c, 0x61, 0x63, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x0a, 0x20, 0x20, 0x20,
1014
+ 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x4d, 0x61, 0x72, 0x6b, 0x64,
1015
+ 0x6f, 0x77, 0x6e, 0x69, 0x73, 0x68, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61,
1016
+ 0x72, 0x61, 0x6d, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
1017
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d,
1018
+ 0x64, 0x20, 0x3d, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x74,
1019
+ 0x65, 0x78, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1020
+ 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x26, 0x2f,
1021
+ 0x67, 0x2c, 0x20, 0x27, 0x26, 0x61, 0x6d, 0x70, 0x3b, 0x27, 0x29, 0x0a,
1022
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70,
1023
+ 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x3c, 0x2f, 0x67, 0x2c, 0x20, 0x27,
1024
+ 0x26, 0x6c, 0x74, 0x3b, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
1025
+ 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28,
1026
+ 0x2f, 0x3e, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x26, 0x67, 0x74, 0x3b, 0x27,
 
 
 
 
1027
  0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72,
1028
+ 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5e, 0x23, 0x7b, 0x31,
1029
+ 0x2c, 0x36, 0x7d, 0x20, 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f, 0x67, 0x69,
1030
+ 0x6d, 0x2c, 0x20, 0x27, 0x3c, 0x68, 0x33, 0x3e, 0x24, 0x31, 0x3c, 0x2f,
1031
+ 0x68, 0x33, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
 
 
 
 
1032
  0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f,
1033
+ 0x5c, 0x2a, 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c, 0x2a, 0x5c,
1034
+ 0x2a, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e,
1035
+ 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67,
1036
+ 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1037
+ 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5f, 0x5f,
1038
+ 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5f, 0x5f, 0x2f, 0x67, 0x2c, 0x20, 0x27,
1039
+ 0x3c, 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x24, 0x31, 0x3c, 0x2f,
1040
+ 0x73, 0x74, 0x72, 0x6f, 0x6e, 0x67, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20,
1041
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61,
1042
+ 0x63, 0x65, 0x28, 0x2f, 0x5c, 0x2a, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5c,
1043
+ 0x2a, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31,
1044
+ 0x3c, 0x2f, 0x65, 0x6d, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
1045
+ 0x20, 0x20, 0x20, 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65,
1046
+ 0x28, 0x2f, 0x5f, 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x5f, 0x2f, 0x67, 0x2c,
1047
+ 0x20, 0x27, 0x3c, 0x65, 0x6d, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x65, 0x6d,
1048
+ 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1049
+ 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60, 0x60,
1050
+ 0x60, 0x2e, 0x2a, 0x3f, 0x5c, 0x6e, 0x28, 0x5b, 0x5c, 0x73, 0x5c, 0x53,
1051
+ 0x5d, 0x2a, 0x3f, 0x29, 0x60, 0x60, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27,
1052
+ 0x3c, 0x70, 0x72, 0x65, 0x3e, 0x3c, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x24,
1053
+ 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x3c, 0x2f, 0x70, 0x72,
1054
+ 0x65, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1055
+ 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x60,
1056
+ 0x28, 0x2e, 0x2a, 0x3f, 0x29, 0x60, 0x2f, 0x67, 0x2c, 0x20, 0x27, 0x3c,
1057
+ 0x63, 0x6f, 0x64, 0x65, 0x3e, 0x24, 0x31, 0x3c, 0x2f, 0x63, 0x6f, 0x64,
1058
+ 0x65, 0x3e, 0x27, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1059
+ 0x20, 0x2e, 0x72, 0x65, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x2f, 0x5c,
1060
+ 0x6e, 0x2f, 0x67, 0x69, 0x6d, 0x2c, 0x20, 0x27, 0x3c, 0x62, 0x72, 0x20,
1061
+ 0x2f, 0x3e, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1062
  0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60,
1063
+ 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x20, 0x64, 0x61, 0x6e, 0x67, 0x65, 0x72,
1064
+ 0x6f, 0x75, 0x73, 0x6c, 0x79, 0x53, 0x65, 0x74, 0x49, 0x6e, 0x6e, 0x65,
1065
+ 0x72, 0x48, 0x54, 0x4d, 0x4c, 0x3d, 0x24, 0x7b, 0x7b, 0x20, 0x5f, 0x5f,
1066
+ 0x68, 0x74, 0x6d, 0x6c, 0x3a, 0x20, 0x6d, 0x64, 0x20, 0x7d, 0x7d, 0x20,
1067
+ 0x2f, 0x3e, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x3b, 0x0a,
1068
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x4d,
1069
+ 0x6f, 0x64, 0x65, 0x6c, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
1070
+ 0x6f, 0x6e, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x61,
1071
+ 0x72, 0x61, 0x6d, 0x73, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
1072
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x6c, 0x6c,
1073
+ 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c,
1074
+ 0x75, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1075
+ 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d,
1076
+ 0x6c, 0x60, 0x3c, 0x73, 0x70, 0x61, 0x6e, 0x2f, 0x3e, 0x60, 0x0a, 0x20,
1077
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
1078
+ 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c,
1079
+ 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x73,
1080
+ 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1081
+ 0x20, 0x20, 0x20, 0x24, 0x7b, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74,
1082
+ 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72,
1083
+ 0x65, 0x64, 0x69, 0x63, 0x74, 0x65, 0x64, 0x5f, 0x70, 0x65, 0x72, 0x5f,
1084
+ 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x5f, 0x6d, 0x73, 0x2e, 0x74, 0x6f, 0x46,
1085
+ 0x69, 0x78, 0x65, 0x64, 0x28, 0x29, 0x7d, 0x6d, 0x73, 0x20, 0x70, 0x65,
1086
+ 0x72, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x2c, 0x20, 0x24, 0x7b, 0x6c,
1087
+ 0x6c, 0x61, 0x6d, 0x61, 0x53, 0x74, 0x61, 0x74, 0x73, 0x2e, 0x76, 0x61,
1088
+ 0x6c, 0x75, 0x65, 0x2e, 0x70, 0x72, 0x65, 0x64, 0x69, 0x63, 0x74, 0x65,
1089
+ 0x64, 0x5f, 0x70, 0x65, 0x72, 0x5f, 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64,
1090
+ 0x2e, 0x74, 0x6f, 0x46, 0x69, 0x78, 0x65, 0x64, 0x28, 0x32, 0x29, 0x7d,
1091
+ 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x73, 0x20, 0x70, 0x65, 0x72, 0x20,
1092
+ 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
1093
+ 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x70, 0x61, 0x6e, 0x3e, 0x0a, 0x20,
1094
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
1095
+ 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69,
1096
+ 0x6f, 0x6e, 0x20, 0x41, 0x70, 0x70, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x73,
1097
+ 0x29, 0x20, 0x7b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72,
1098
  0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x68, 0x74, 0x6d, 0x6c, 0x60, 0x0a,
1099
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x64, 0x69, 0x76,
1100
+ 0x20, 0x69, 0x64, 0x3d, 0x22, 0x63, 0x6f, 0x6e, 0x74, 0x61, 0x69, 0x6e,
1101
+ 0x65, 0x72, 0x22, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1102
+ 0x20, 0x20, 0x20, 0x3c, 0x68, 0x65, 0x61, 0x64, 0x65, 0x72, 0x3e, 0x0a,
1103
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1104
+ 0x3c, 0x68, 0x31, 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70,
1105
+ 0x70, 0x3c, 0x2f, 0x68, 0x31, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
1106
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x68, 0x65, 0x61, 0x64, 0x65,
1107
+ 0x72, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1108
+ 0x20, 0x20, 0x3c, 0x6d, 0x61, 0x69, 0x6e, 0x20, 0x69, 0x64, 0x3d, 0x22,
1109
+ 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x22, 0x3e, 0x0a, 0x20, 0x20,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x24,
1111
+ 0x7b, 0x63, 0x68, 0x61, 0x74, 0x53, 0x74, 0x61, 0x72, 0x74, 0x65, 0x64,
1112
+ 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x20, 0x3f, 0x20, 0x43, 0x68, 0x61,
1113
+ 0x74, 0x4c, 0x6f, 0x67, 0x20, 0x3a, 0x20, 0x43, 0x6f, 0x6e, 0x66, 0x69,
1114
+ 0x67, 0x46, 0x6f, 0x72, 0x6d, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20,
1115
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x6d, 0x61,
1116
+ 0x69, 0x6e, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1117
+ 0x20, 0x20, 0x20, 0x3c, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x20,
1118
+ 0x69, 0x64, 0x3d, 0x22, 0x77, 0x72, 0x69, 0x74, 0x65, 0x22, 0x3e, 0x0a,
1119
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1120
+ 0x3c, 0x24, 0x7b, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x49, 0x6e,
1121
+ 0x70, 0x75, 0x74, 0x7d, 0x20, 0x2f, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20,
1122
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x65, 0x63, 0x74,
1123
+ 0x69, 0x6f, 0x6e, 0x3e, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1124
+ 0x20, 0x20, 0x20, 0x20, 0x3c, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x3e,
1125
+ 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1126
+ 0x20, 0x3c, 0x70, 0x3e, 0x3c, 0x24, 0x7b, 0x4d, 0x6f, 0x64, 0x65, 0x6c,
1127
+ 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x49, 0x6e,
1128
+ 0x66, 0x6f, 0x7d, 0x20, 0x2f, 0x3e, 0x3c, 0x2f, 0x70, 0x3e, 0x0a, 0x20,
1129
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c,
1130
+ 0x70, 0x3e, 0x50, 0x6f, 0x77, 0x65, 0x72, 0x65, 0x64, 0x20, 0x62, 0x79,
1131
+ 0x20, 0x3c, 0x61, 0x20, 0x68, 0x72, 0x65, 0x66, 0x3d, 0x22, 0x68, 0x74,
1132
+ 0x74, 0x70, 0x73, 0x3a, 0x2f, 0x2f, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62,
1133
+ 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x67, 0x67, 0x65, 0x72, 0x67, 0x61, 0x6e,
1134
+ 0x6f, 0x76, 0x2f, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70,
1135
+ 0x22, 0x3e, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x3c,
1136
+ 0x2f, 0x61, 0x3e, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x3c, 0x61, 0x20, 0x68,
1137
+ 0x72, 0x65, 0x66, 0x3d, 0x22, 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a, 0x2f,
1138
+ 0x2f, 0x67, 0x67, 0x6d, 0x6c, 0x2e, 0x61, 0x69, 0x22, 0x3e, 0x67, 0x67,
1139
+ 0x6d, 0x6c, 0x2e, 0x61, 0x69, 0x3c, 0x2f, 0x61, 0x3e, 0x2e, 0x3c, 0x2f,
1140
+ 0x70, 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
1141
+ 0x20, 0x3c, 0x2f, 0x66, 0x6f, 0x6f, 0x74, 0x65, 0x72, 0x3e, 0x0a, 0x20,
1142
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x3c, 0x2f, 0x64, 0x69, 0x76,
1143
+ 0x3e, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x60, 0x3b, 0x0a, 0x20,
1144
+ 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
1145
+ 0x6e, 0x64, 0x65, 0x72, 0x28, 0x68, 0x28, 0x41, 0x70, 0x70, 0x29, 0x2c,
1146
+ 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x62, 0x6f,
1147
+ 0x64, 0x79, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x3c, 0x2f, 0x73, 0x63, 0x72,
1148
+ 0x69, 0x70, 0x74, 0x3e, 0x0a, 0x3c, 0x2f, 0x68, 0x65, 0x61, 0x64, 0x3e,
1149
+ 0x0a, 0x0a, 0x3c, 0x62, 0x6f, 0x64, 0x79, 0x3e, 0x0a, 0x3c, 0x2f, 0x62,
1150
+ 0x6f, 0x64, 0x79, 0x3e, 0x0a, 0x0a, 0x3c, 0x2f, 0x68, 0x74, 0x6d, 0x6c,
1151
+ 0x3e, 0x0a
 
 
 
1152
  };
1153
+ unsigned int index_html_len = 13790;
examples/server/public/index.html CHANGED
@@ -73,6 +73,37 @@
73
  margin: 0;
74
  }
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  textarea {
77
  padding: 5px;
78
  flex-grow: 1;
@@ -125,10 +156,17 @@
125
  const params = signal({
126
  n_predict: 400,
127
  temperature: 0.7,
128
- repeat_last_n: 256,
129
- repeat_penalty: 1.18,
130
- top_k: 40,
131
- top_p: 0.5,
 
 
 
 
 
 
 
132
  })
133
 
134
  const llamaStats = signal(null)
@@ -264,6 +302,27 @@
264
  const updateSession = (el) => session.value = { ...session.value, [el.target.name]: el.target.value }
265
  const updateParams = (el) => params.value = { ...params.value, [el.target.name]: el.target.value }
266
  const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
 
268
  return html`
269
  <form>
@@ -272,7 +331,9 @@
272
  <label for="prompt">Prompt</label>
273
  <textarea type="text" name="prompt" value="${session.value.prompt}" rows=4 oninput=${updateSession}/>
274
  </div>
 
275
 
 
276
  <div>
277
  <label for="user">User name</label>
278
  <input type="text" name="user" value="${session.value.user}" oninput=${updateSession} />
@@ -282,7 +343,9 @@
282
  <label for="bot">Bot name</label>
283
  <input type="text" name="char" value="${session.value.char}" oninput=${updateSession} />
284
  </div>
 
285
 
 
286
  <div>
287
  <label for="template">Prompt template</label>
288
  <textarea id="template" name="template" value="${session.value.template}" rows=4 oninput=${updateSession}/>
@@ -292,38 +355,44 @@
292
  <label for="template">Chat history template</label>
293
  <textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
294
  </div>
 
295
 
296
- <div>
297
- <label for="temperature">Temperature</label>
298
- <input type="range" id="temperature" min="0.0" max="1.0" step="0.01" name="temperature" value="${params.value.temperature}" oninput=${updateParamsFloat} />
299
- <span>${params.value.temperature}</span>
300
- </div>
301
-
302
- <div>
303
- <label for="nPredict">Predictions</label>
304
- <input type="range" id="nPredict" min="1" max="2048" step="1" name="n_predict" value="${params.value.n_predict}" oninput=${updateParamsFloat} />
305
- <span>${params.value.n_predict}</span>
306
- </div>
307
-
308
- <div>
309
- <label for="repeat_penalty">Penalize repeat sequence</label>
310
- <input type="range" id="repeat_penalty" min="0.0" max="2.0" step="0.01" name="repeat_penalty" value="${params.value.repeat_penalty}" oninput=${updateParamsFloat} />
311
- <span>${params.value.repeat_penalty}</span>
312
- </div>
313
-
314
- <div>
315
- <label for="repeat_last_n">Consider N tokens for penalize</label>
316
- <input type="range" id="repeat_last_n" min="0.0" max="2048" name="repeat_last_n" value="${params.value.repeat_last_n}" oninput=${updateParamsFloat} />
317
- <span>${params.value.repeat_last_n}</span>
318
- </div>
319
-
320
  </fieldset>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
  </form>
322
  `
323
  }
324
  // poor mans markdown replacement
325
  const Markdownish = (params) => {
326
  const md = params.text
 
 
 
327
  .replace(/^#{1,6} (.*)$/gim, '<h3>$1</h3>')
328
  .replace(/\*\*(.*?)\*\*/g, '<strong>$1</strong>')
329
  .replace(/__(.*?)__/g, '<strong>$1</strong>')
 
73
  margin: 0;
74
  }
75
 
76
+ fieldset.two {
77
+ display: grid;
78
+ grid-template: "a a";
79
+ gap: 1em;
80
+ }
81
+
82
+ fieldset.three {
83
+ display: grid;
84
+ grid-template: "a a a";
85
+ gap: 1em;
86
+ }
87
+
88
+ details {
89
+ border: 1px solid #aaa;
90
+ border-radius: 4px;
91
+ padding: 0.5em 0.5em 0;
92
+ margin-top: 0.5em;
93
+ }
94
+
95
+ summary {
96
+ font-weight: bold;
97
+ margin: -0.5em -0.5em 0;
98
+ padding: 0.5em;
99
+ cursor: pointer;
100
+ }
101
+
102
+ details[open] {
103
+ padding: 0.5em;
104
+ }
105
+
106
+
107
  textarea {
108
  padding: 5px;
109
  flex-grow: 1;
 
156
  const params = signal({
157
  n_predict: 400,
158
  temperature: 0.7,
159
+ repeat_last_n: 256, // 0 = disable penalty, -1 = context size
160
+ repeat_penalty: 1.18, // 1.0 = disabled
161
+ top_k: 40, // <= 0 to use vocab size
162
+ top_p: 0.5, // 1.0 = disabled
163
+ tfs_z: 1.0, // 1.0 = disabled
164
+ typical_p: 1.0, // 1.0 = disabled
165
+ presence_penalty: 0.0, // 0.0 = disabled
166
+ frequency_penalty: 0.0, // 0.0 = disabled
167
+ mirostat: 0, // 0/1/2
168
+ mirostat_tau: 5, // target entropy
169
+ mirostat_eta: 0.1, // learning rate
170
  })
171
 
172
  const llamaStats = signal(null)
 
302
  const updateSession = (el) => session.value = { ...session.value, [el.target.name]: el.target.value }
303
  const updateParams = (el) => params.value = { ...params.value, [el.target.name]: el.target.value }
304
  const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
305
+ const updateParamsInt = (el) => params.value = { ...params.value, [el.target.name]: Math.floor(parseFloat(el.target.value)) }
306
+
307
+ const FloatField = ({label, max, min, name, step, value}) => {
308
+ return html`
309
+ <div>
310
+ <label for="${name}">${label}</label>
311
+ <input type="range" id="${name}" min="${min}" max="${max}" step="${step}" name="${name}" value="${value}" oninput=${updateParamsFloat} />
312
+ <span>${value}</span>
313
+ </div>
314
+ `
315
+ };
316
+
317
+ const IntField = ({label, max, min, name, value}) => {
318
+ return html`
319
+ <div>
320
+ <label for="${name}">${label}</label>
321
+ <input type="range" id="${name}" min="${min}" max="${max}" name="${name}" value="${value}" oninput=${updateParamsInt} />
322
+ <span>${value}</span>
323
+ </div>
324
+ `
325
+ };
326
 
327
  return html`
328
  <form>
 
331
  <label for="prompt">Prompt</label>
332
  <textarea type="text" name="prompt" value="${session.value.prompt}" rows=4 oninput=${updateSession}/>
333
  </div>
334
+ </fieldset>
335
 
336
+ <fieldset class="two">
337
  <div>
338
  <label for="user">User name</label>
339
  <input type="text" name="user" value="${session.value.user}" oninput=${updateSession} />
 
343
  <label for="bot">Bot name</label>
344
  <input type="text" name="char" value="${session.value.char}" oninput=${updateSession} />
345
  </div>
346
+ </fieldset>
347
 
348
+ <fieldset>
349
  <div>
350
  <label for="template">Prompt template</label>
351
  <textarea id="template" name="template" value="${session.value.template}" rows=4 oninput=${updateSession}/>
 
355
  <label for="template">Chat history template</label>
356
  <textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
357
  </div>
358
+ </fieldset>
359
 
360
+ <fieldset class="two">
361
+ ${IntField({label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict})}
362
+ ${FloatField({label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature})}
363
+ ${FloatField({label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty})}
364
+ ${IntField({label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n})}
365
+ ${IntField({label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k})}
366
+ ${FloatField({label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p})}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367
  </fieldset>
368
+ <details>
369
+ <summary>More options</summary>
370
+ <fieldset class="two">
371
+ ${FloatField({label: "TFS-Z", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z})}
372
+ ${FloatField({label: "Typical P", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p})}
373
+ ${FloatField({label: "Presence penalty", max: 1.0, min: 0.0, name: "presence_penalty", step: 0.01, value: params.value.presence_penalty})}
374
+ ${FloatField({label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty})}
375
+ </fieldset>
376
+ <hr />
377
+ <fieldset class="three">
378
+ <div>
379
+ <label><input type="radio" name="mirostat" value="0" checked=${params.value.mirostat == 0} oninput=${updateParamsInt} /> no Mirostat</label>
380
+ <label><input type="radio" name="mirostat" value="1" checked=${params.value.mirostat == 1} oninput=${updateParamsInt} /> Mirostat v1</label>
381
+ <label><input type="radio" name="mirostat" value="2" checked=${params.value.mirostat == 2} oninput=${updateParamsInt} /> Mirostat v2</label>
382
+ </div>
383
+ ${FloatField({label: "Mirostat tau", max: 10.0, min: 0.0, name: "mirostat_tau", step: 0.01, value: params.value.mirostat_tau})}
384
+ ${FloatField({label: "Mirostat eta", max: 1.0, min: 0.0, name: "mirostat_eta", step: 0.01, value: params.value.mirostat_eta})}
385
+ </fieldset>
386
+ </details>
387
  </form>
388
  `
389
  }
390
  // poor mans markdown replacement
391
  const Markdownish = (params) => {
392
  const md = params.text
393
+ .replace(/&/g, '&amp;')
394
+ .replace(/</g, '&lt;')
395
+ .replace(/>/g, '&gt;')
396
  .replace(/^#{1,6} (.*)$/gim, '<h3>$1</h3>')
397
  .replace(/\*\*(.*?)\*\*/g, '<strong>$1</strong>')
398
  .replace(/__(.*?)__/g, '<strong>$1</strong>')
examples/server/server.cpp CHANGED
@@ -601,45 +601,49 @@ struct llama_server_context
601
  static void server_print_usage(const char *argv0, const gpt_params &params,
602
  const server_params &sparams)
603
  {
604
- fprintf(stderr, "usage: %s [options]\n", argv0);
605
- fprintf(stderr, "\n");
606
- fprintf(stderr, "options:\n");
607
- fprintf(stderr, " -h, --help show this help message and exit\n");
608
- fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
609
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
610
- fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
611
- fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
612
- fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
613
- fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
 
 
 
 
614
  if (llama_mlock_supported())
615
  {
616
- fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
617
  }
618
  if (llama_mmap_supported())
619
  {
620
- fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
621
  }
622
  #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
623
- fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
624
- fprintf(stderr, " number of layers to store in VRAM\n");
625
- fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
626
- fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
627
- fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
628
- fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
629
- fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
630
  #endif
631
- fprintf(stderr, " -m FNAME, --model FNAME\n");
632
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
633
- fprintf(stderr, " -a ALIAS, --alias ALIAS\n");
634
- fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n");
635
- fprintf(stderr, " --lora FNAME apply LoRA adapter\n");
636
- fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
637
- fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
638
- fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port);
639
- fprintf(stderr, " --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
640
- fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
641
- fprintf(stderr, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
642
- fprintf(stderr, "\n");
643
  }
644
 
645
  static void server_params_parse(int argc, char **argv, server_params &sparams,
@@ -722,6 +726,41 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
722
  }
723
  params.n_ctx = std::stoi(argv[i]);
724
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725
  else if (arg == "--memory-f32" || arg == "--memory_f32")
726
  {
727
  params.memory_f16 = false;
@@ -820,6 +859,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
820
  break;
821
  }
822
  params.lora_adapter = argv[i];
 
823
  }
824
  else if (arg == "--lora-base")
825
  {
 
601
  static void server_print_usage(const char *argv0, const gpt_params &params,
602
  const server_params &sparams)
603
  {
604
+ fprintf(stdout, "usage: %s [options]\n", argv0);
605
+ fprintf(stdout, "\n");
606
+ fprintf(stdout, "options:\n");
607
+ fprintf(stdout, " -h, --help show this help message and exit\n");
608
+ fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
609
+ fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
610
+ fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
611
+ fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
612
+ fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
613
+ fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
614
+ fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
615
+ fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
616
+ fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
617
+ fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n");
618
  if (llama_mlock_supported())
619
  {
620
+ fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
621
  }
622
  if (llama_mmap_supported())
623
  {
624
+ fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
625
  }
626
  #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
627
+ fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
628
+ fprintf(stdout, " number of layers to store in VRAM\n");
629
+ fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n");
630
+ fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
631
+ fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
632
+ fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
633
+ fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
634
  #endif
635
+ fprintf(stdout, " -m FNAME, --model FNAME\n");
636
+ fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
637
+ fprintf(stdout, " -a ALIAS, --alias ALIAS\n");
638
+ fprintf(stdout, " set an alias for the model, will be added as `model` field in completion response\n");
639
+ fprintf(stdout, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
640
+ fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
641
+ fprintf(stdout, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
642
+ fprintf(stdout, " --port PORT port to listen (default (default: %d)\n", sparams.port);
643
+ fprintf(stdout, " --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
644
+ fprintf(stdout, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
645
+ fprintf(stdout, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
646
+ fprintf(stdout, "\n");
647
  }
648
 
649
  static void server_params_parse(int argc, char **argv, server_params &sparams,
 
726
  }
727
  params.n_ctx = std::stoi(argv[i]);
728
  }
729
+ else if (arg == "-gqa" || arg == "--gqa")
730
+ {
731
+ if (++i >= argc)
732
+ {
733
+ invalid_param = true;
734
+ break;
735
+ }
736
+ params.n_gqa = std::stoi(argv[i]);
737
+ }
738
+ else if (arg == "-eps" || arg == "--rms-norm-eps") {
739
+ if (++i >= argc)
740
+ {
741
+ invalid_param = true;
742
+ break;
743
+ }
744
+ params.rms_norm_eps = std::stof(argv[i]);
745
+ }
746
+ else if (arg == "--rope-freq-base")
747
+ {
748
+ if (++i >= argc)
749
+ {
750
+ invalid_param = true;
751
+ break;
752
+ }
753
+ params.rope_freq_base = std::stof(argv[i]);
754
+ }
755
+ else if (arg == "--rope-freq-scale")
756
+ {
757
+ if (++i >= argc)
758
+ {
759
+ invalid_param = true;
760
+ break;
761
+ }
762
+ params.rope_freq_scale = std::stof(argv[i]);
763
+ }
764
  else if (arg == "--memory-f32" || arg == "--memory_f32")
765
  {
766
  params.memory_f16 = false;
 
859
  break;
860
  }
861
  params.lora_adapter = argv[i];
862
+ params.use_mmap = false;
863
  }
864
  else if (arg == "--lora-base")
865
  {
examples/simple/CMakeLists.txt CHANGED
@@ -1,5 +1,6 @@
1
  set(TARGET simple)
2
  add_executable(${TARGET} simple.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
5
  if(TARGET BUILD_INFO)
 
1
  set(TARGET simple)
2
  add_executable(${TARGET} simple.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
6
  if(TARGET BUILD_INFO)
examples/train-text-from-scratch/CMakeLists.txt CHANGED
@@ -1,4 +1,5 @@
1
  set(TARGET train-text-from-scratch)
2
  add_executable(${TARGET} train-text-from-scratch.cpp)
 
3
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
4
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
 
1
  set(TARGET train-text-from-scratch)
2
  add_executable(${TARGET} train-text-from-scratch.cpp)
3
+ install(TARGETS ${TARGET} RUNTIME)
4
  target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
5
  target_compile_features(${TARGET} PRIVATE cxx_std_11)
examples/train-text-from-scratch/train-text-from-scratch.cpp CHANGED
@@ -16,6 +16,8 @@
16
  #pragma warning(disable: 4244 4267) // possible loss of data
17
  #endif
18
 
 
 
19
  struct random_normal_distribution {
20
  std::mt19937 gen;
21
  std::normal_distribution<float> rd;
@@ -439,7 +441,7 @@ struct ggml_tensor * forward(
439
  // norm
440
  {
441
  // cur shape [n_embd,N,1,1]
442
- cur = ggml_rms_norm(ctx0, inpL);
443
 
444
  // cur = attention_norm*cur
445
  cur = ggml_mul(ctx0,
@@ -562,7 +564,7 @@ struct ggml_tensor * forward(
562
  // norm
563
  {
564
  // cur shape [n_embd,N,1,1]
565
- cur = ggml_rms_norm(ctx0, inpFF);
566
 
567
  // cur = ffn_norm*cur
568
  // cur shape [n_embd,N,1,1]
@@ -606,7 +608,7 @@ struct ggml_tensor * forward(
606
  {
607
 
608
  // inpL shape [n_embd,N,1,1]
609
- inpL = ggml_rms_norm(ctx0, inpL);
610
 
611
  // inpL = norm*inpL
612
  // inpL shape [n_embd,N,1,1]
@@ -694,7 +696,7 @@ struct ggml_tensor * forward_batch(
694
  // norm
695
  {
696
  // cur shape [n_embd,N*n_batch,1,1]
697
- cur = ggml_rms_norm(ctx0, inpL);
698
  assert_shape_2d(cur, n_embd, N*n_batch);
699
 
700
  // cur = attention_norm*cur
@@ -857,7 +859,7 @@ struct ggml_tensor * forward_batch(
857
  // norm
858
  {
859
  // cur shape [n_embd,N*n_batch,1,1]
860
- cur = ggml_rms_norm(ctx0, inpFF);
861
  assert_shape_2d(cur, n_embd, N*n_batch);
862
 
863
  // cur = ffn_norm*cur
@@ -910,7 +912,7 @@ struct ggml_tensor * forward_batch(
910
  {
911
 
912
  // inpL shape [n_embd,N*n_batch,1,1]
913
- inpL = ggml_rms_norm(ctx0, inpL);
914
  assert_shape_2d(inpL, n_embd, N*n_batch);
915
 
916
  // inpL = norm*inpL
@@ -979,7 +981,7 @@ struct ggml_tensor * forward_batch_wo_cache(
979
  // norm
980
  {
981
  // cur shape [n_embd,N*n_batch,1,1]
982
- cur = ggml_rms_norm(ctx0, inpL);
983
  assert_shape_2d(cur, n_embd, N*n_batch);
984
 
985
  // cur = attention_norm*cur
@@ -1085,7 +1087,7 @@ struct ggml_tensor * forward_batch_wo_cache(
1085
  // norm
1086
  {
1087
  // cur shape [n_embd,N*n_batch,1,1]
1088
- cur = ggml_rms_norm(ctx0, inpFF);
1089
  assert_shape_2d(cur, n_embd, N*n_batch);
1090
 
1091
  // cur = ffn_norm*cur
@@ -1138,7 +1140,7 @@ struct ggml_tensor * forward_batch_wo_cache(
1138
  {
1139
 
1140
  // inpL shape [n_embd,N*n_batch,1,1]
1141
- inpL = ggml_rms_norm(ctx0, inpL);
1142
  assert_shape_2d(inpL, n_embd, N*n_batch);
1143
 
1144
  // inpL = norm*inpL
@@ -1203,7 +1205,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
1203
 
1204
  // norm
1205
  {
1206
- cur = ggml_rms_norm(ctx0, inpL);
1207
  assert_shape_2d(cur, n_embd, N*n_batch);
1208
 
1209
  // cur = attention_norm*cur
@@ -1267,7 +1269,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
1267
  {
1268
  // norm
1269
  {
1270
- cur = ggml_rms_norm(ctx0, inpFF);
1271
  assert_shape_2d(cur, n_embd, N*n_batch);
1272
 
1273
  // cur = ffn_norm*cur
@@ -1311,7 +1313,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
1311
  // norm
1312
  {
1313
 
1314
- inpL = ggml_rms_norm(ctx0, inpL);
1315
  assert_shape_2d(inpL, n_embd, N*n_batch);
1316
 
1317
  // inpL = norm*inpL
@@ -1434,7 +1436,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
1434
  gf->perf_time_us = 0;
1435
 
1436
  const auto & hparams = model->hparams;
1437
- //const int n_ctx = hparams.n_ctx;
1438
  const int n_vocab = hparams.n_vocab;
1439
  const int n_embd = hparams.n_embd;
1440
  const int n_layer = hparams.n_layer;
@@ -1603,7 +1605,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
1603
  struct my_llama_layer & layer = model->layers[il];
1604
  // tensors with values necessary for backward pass are in persistent buf(-1)
1605
  // other tensors with buf(0) and buf(1) are only temporary needed, and their memory reused after layer is completed.
1606
- use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t02, n_embd, N*n_batch);
1607
  use_buf( 0); struct ggml_tensor * t03 = expand(gf, ggml_repeat (ctx0, layer.attention_norm, t02)); assert_shape_2d(t03, n_embd, N*n_batch);
1608
  use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch);
1609
  use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch);
@@ -1623,7 +1625,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
1623
  use_buf(-1); struct ggml_tensor * t19 = expand(gf, ggml_reshape_2d (ctx0, t18, n_embd, N*n_batch)); assert_shape_2d(t19, n_embd, N*n_batch);
1624
  use_buf( 0); struct ggml_tensor * t20 = expand(gf, ggml_mul_mat (ctx0, layer.wo, t19)); assert_shape_2d(t20, n_embd, N*n_batch);
1625
  use_buf(-1); struct ggml_tensor * t21 = expand(gf, ggml_add (ctx0, t20, cur)); assert_shape_2d(t21, n_embd, N*n_batch);
1626
- use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21)); assert_shape_2d(t22, n_embd, N*n_batch);
1627
  use_buf( 0); struct ggml_tensor * t23 = expand(gf, ggml_repeat (ctx0, layer.ffn_norm, t22)); assert_shape_2d(t23, n_embd, N*n_batch);
1628
  use_buf(-1); struct ggml_tensor * t24 = expand(gf, ggml_mul (ctx0, t23, t22)); assert_shape_2d(t24, n_embd, N*n_batch);
1629
  use_buf(-1); struct ggml_tensor * t25 = expand(gf, ggml_mul_mat (ctx0, layer.w3, t24)); assert_shape_2d(t25, n_ff, N*n_batch);
@@ -1666,7 +1668,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
1666
  }
1667
  clr_buf(0);
1668
  use_buf(0);
1669
- struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t31, n_embd, N*n_batch);
1670
  struct ggml_tensor * t32 = expand(gf, ggml_repeat (ctx0, model->norm, t31)); assert_shape_2d(t32, n_embd, N*n_batch);
1671
  struct ggml_tensor * t33 = expand(gf, ggml_mul (ctx0, t32, t31)); assert_shape_2d(t33, n_embd, N*n_batch);
1672
  use_buf(-1);
@@ -1863,10 +1865,10 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
1863
  t12->grad = expand(gb, ggml_permute(ctx0, t15->grad, 0, 2, 3, 1)); assert_shape_4d(t12->grad, N, n_batch, n_embd/n_head, n_head);
1864
  t11->grad = expand(gb, ggml_reshape_2d(ctx0, ggml_cont(ctx0, t12->grad), N*n_batch, n_embd)); assert_shape_2d(t11->grad, N*n_batch, n_embd);
1865
  t10->grad = expand(gb, ggml_permute(ctx0, t14->grad, 0, 2, 1, 3)); assert_shape_4d(t10->grad, n_embd/n_head, n_head, N, n_batch);
1866
- t09->grad = expand(gb, ggml_rope_back(ctx0, t10->grad, n_past, n_rot, rope_mode)); assert_shape_4d(t09->grad, n_embd/n_head, n_head, N, n_batch);
1867
  t08->grad = expand(gb, ggml_reshape_2d(ctx0, t09->grad, n_embd, N*n_batch)); assert_shape_2d(t08->grad, n_embd, N*n_batch);
1868
  t07->grad = expand(gb, ggml_permute(ctx0, t13->grad, 0, 2, 1, 3)); assert_shape_4d(t07->grad, n_embd/n_head, n_head, N, n_batch);
1869
- t06->grad = expand(gb, ggml_rope_back(ctx0, t07->grad, n_past, n_rot, rope_mode)); assert_shape_4d(t06->grad, n_embd/n_head, n_head, N, n_batch);
1870
  t05->grad = expand(gb, ggml_reshape_2d(ctx0, t06->grad, n_embd, N*n_batch)); assert_shape_2d(t05->grad, n_embd, N*n_batch);
1871
  t04->grad = expand(gb, ggml_add_inplace(ctx0,
1872
  ggml_add_inplace(ctx0,
 
16
  #pragma warning(disable: 4244 4267) // possible loss of data
17
  #endif
18
 
19
+ static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
20
+
21
  struct random_normal_distribution {
22
  std::mt19937 gen;
23
  std::normal_distribution<float> rd;
 
441
  // norm
442
  {
443
  // cur shape [n_embd,N,1,1]
444
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
445
 
446
  // cur = attention_norm*cur
447
  cur = ggml_mul(ctx0,
 
564
  // norm
565
  {
566
  // cur shape [n_embd,N,1,1]
567
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
568
 
569
  // cur = ffn_norm*cur
570
  // cur shape [n_embd,N,1,1]
 
608
  {
609
 
610
  // inpL shape [n_embd,N,1,1]
611
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
612
 
613
  // inpL = norm*inpL
614
  // inpL shape [n_embd,N,1,1]
 
696
  // norm
697
  {
698
  // cur shape [n_embd,N*n_batch,1,1]
699
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
700
  assert_shape_2d(cur, n_embd, N*n_batch);
701
 
702
  // cur = attention_norm*cur
 
859
  // norm
860
  {
861
  // cur shape [n_embd,N*n_batch,1,1]
862
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
863
  assert_shape_2d(cur, n_embd, N*n_batch);
864
 
865
  // cur = ffn_norm*cur
 
912
  {
913
 
914
  // inpL shape [n_embd,N*n_batch,1,1]
915
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
916
  assert_shape_2d(inpL, n_embd, N*n_batch);
917
 
918
  // inpL = norm*inpL
 
981
  // norm
982
  {
983
  // cur shape [n_embd,N*n_batch,1,1]
984
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
985
  assert_shape_2d(cur, n_embd, N*n_batch);
986
 
987
  // cur = attention_norm*cur
 
1087
  // norm
1088
  {
1089
  // cur shape [n_embd,N*n_batch,1,1]
1090
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
1091
  assert_shape_2d(cur, n_embd, N*n_batch);
1092
 
1093
  // cur = ffn_norm*cur
 
1140
  {
1141
 
1142
  // inpL shape [n_embd,N*n_batch,1,1]
1143
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
1144
  assert_shape_2d(inpL, n_embd, N*n_batch);
1145
 
1146
  // inpL = norm*inpL
 
1205
 
1206
  // norm
1207
  {
1208
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
1209
  assert_shape_2d(cur, n_embd, N*n_batch);
1210
 
1211
  // cur = attention_norm*cur
 
1269
  {
1270
  // norm
1271
  {
1272
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
1273
  assert_shape_2d(cur, n_embd, N*n_batch);
1274
 
1275
  // cur = ffn_norm*cur
 
1313
  // norm
1314
  {
1315
 
1316
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
1317
  assert_shape_2d(inpL, n_embd, N*n_batch);
1318
 
1319
  // inpL = norm*inpL
 
1436
  gf->perf_time_us = 0;
1437
 
1438
  const auto & hparams = model->hparams;
1439
+ const int n_ctx = hparams.n_ctx;
1440
  const int n_vocab = hparams.n_vocab;
1441
  const int n_embd = hparams.n_embd;
1442
  const int n_layer = hparams.n_layer;
 
1605
  struct my_llama_layer & layer = model->layers[il];
1606
  // tensors with values necessary for backward pass are in persistent buf(-1)
1607
  // other tensors with buf(0) and buf(1) are only temporary needed, and their memory reused after layer is completed.
1608
+ use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t02, n_embd, N*n_batch);
1609
  use_buf( 0); struct ggml_tensor * t03 = expand(gf, ggml_repeat (ctx0, layer.attention_norm, t02)); assert_shape_2d(t03, n_embd, N*n_batch);
1610
  use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch);
1611
  use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch);
 
1625
  use_buf(-1); struct ggml_tensor * t19 = expand(gf, ggml_reshape_2d (ctx0, t18, n_embd, N*n_batch)); assert_shape_2d(t19, n_embd, N*n_batch);
1626
  use_buf( 0); struct ggml_tensor * t20 = expand(gf, ggml_mul_mat (ctx0, layer.wo, t19)); assert_shape_2d(t20, n_embd, N*n_batch);
1627
  use_buf(-1); struct ggml_tensor * t21 = expand(gf, ggml_add (ctx0, t20, cur)); assert_shape_2d(t21, n_embd, N*n_batch);
1628
+ use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21, rms_norm_eps)); assert_shape_2d(t22, n_embd, N*n_batch);
1629
  use_buf( 0); struct ggml_tensor * t23 = expand(gf, ggml_repeat (ctx0, layer.ffn_norm, t22)); assert_shape_2d(t23, n_embd, N*n_batch);
1630
  use_buf(-1); struct ggml_tensor * t24 = expand(gf, ggml_mul (ctx0, t23, t22)); assert_shape_2d(t24, n_embd, N*n_batch);
1631
  use_buf(-1); struct ggml_tensor * t25 = expand(gf, ggml_mul_mat (ctx0, layer.w3, t24)); assert_shape_2d(t25, n_ff, N*n_batch);
 
1668
  }
1669
  clr_buf(0);
1670
  use_buf(0);
1671
+ struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t31, n_embd, N*n_batch);
1672
  struct ggml_tensor * t32 = expand(gf, ggml_repeat (ctx0, model->norm, t31)); assert_shape_2d(t32, n_embd, N*n_batch);
1673
  struct ggml_tensor * t33 = expand(gf, ggml_mul (ctx0, t32, t31)); assert_shape_2d(t33, n_embd, N*n_batch);
1674
  use_buf(-1);
 
1865
  t12->grad = expand(gb, ggml_permute(ctx0, t15->grad, 0, 2, 3, 1)); assert_shape_4d(t12->grad, N, n_batch, n_embd/n_head, n_head);
1866
  t11->grad = expand(gb, ggml_reshape_2d(ctx0, ggml_cont(ctx0, t12->grad), N*n_batch, n_embd)); assert_shape_2d(t11->grad, N*n_batch, n_embd);
1867
  t10->grad = expand(gb, ggml_permute(ctx0, t14->grad, 0, 2, 1, 3)); assert_shape_4d(t10->grad, n_embd/n_head, n_head, N, n_batch);
1868
+ t09->grad = expand(gb, ggml_rope_back(ctx0, t10->grad, n_past, n_rot, rope_mode, n_ctx)); assert_shape_4d(t09->grad, n_embd/n_head, n_head, N, n_batch);
1869
  t08->grad = expand(gb, ggml_reshape_2d(ctx0, t09->grad, n_embd, N*n_batch)); assert_shape_2d(t08->grad, n_embd, N*n_batch);
1870
  t07->grad = expand(gb, ggml_permute(ctx0, t13->grad, 0, 2, 1, 3)); assert_shape_4d(t07->grad, n_embd/n_head, n_head, N, n_batch);
1871
+ t06->grad = expand(gb, ggml_rope_back(ctx0, t07->grad, n_past, n_rot, rope_mode, n_ctx)); assert_shape_4d(t06->grad, n_embd/n_head, n_head, N, n_batch);
1872
  t05->grad = expand(gb, ggml_reshape_2d(ctx0, t06->grad, n_embd, N*n_batch)); assert_shape_2d(t05->grad, n_embd, N*n_batch);
1873
  t04->grad = expand(gb, ggml_add_inplace(ctx0,
1874
  ggml_add_inplace(ctx0,
expose.cpp CHANGED
@@ -223,10 +223,15 @@ extern "C"
223
  float get_last_eval_time() {
224
  return last_eval_time;
225
  }
226
-
227
  float get_last_process_time() {
228
  return last_process_time;
229
  }
 
 
 
 
 
 
230
 
231
  const char* get_pending_output() {
232
  return gpttype_get_pending_output().c_str();
 
223
  float get_last_eval_time() {
224
  return last_eval_time;
225
  }
 
226
  float get_last_process_time() {
227
  return last_process_time;
228
  }
229
+ int get_last_token_count() {
230
+ return last_token_count;
231
+ }
232
+ int get_last_stop_reason() {
233
+ return (int)last_stop_reason;
234
+ }
235
 
236
  const char* get_pending_output() {
237
  return gpttype_get_pending_output().c_str();
expose.h CHANGED
@@ -2,6 +2,7 @@
2
 
3
  const int stop_token_max = 10;
4
  const int ban_token_max = 10;
 
5
  // match kobold's sampler list and order
6
  enum samplers
7
  {
@@ -14,6 +15,13 @@ enum samplers
14
  KCPP_SAMPLER_REP_PEN=6,
15
  KCPP_SAMPLER_MAX
16
  };
 
 
 
 
 
 
 
17
  struct load_model_inputs
18
  {
19
  const int threads;
@@ -36,8 +44,10 @@ struct load_model_inputs
36
  const int debugmode = 0;
37
  const int forceversion = 0;
38
  const int gpulayers = 0;
39
- const bool linear_rope;
 
40
  const char * banned_tokens[ban_token_max];
 
41
  };
42
  struct generation_inputs
43
  {
@@ -74,3 +84,5 @@ extern std::vector<std::string> generated_tokens;
74
  extern bool generation_finished;
75
  extern float last_eval_time;
76
  extern float last_process_time;
 
 
 
2
 
3
  const int stop_token_max = 10;
4
  const int ban_token_max = 10;
5
+ const int tensor_split_max = 16;
6
  // match kobold's sampler list and order
7
  enum samplers
8
  {
 
15
  KCPP_SAMPLER_REP_PEN=6,
16
  KCPP_SAMPLER_MAX
17
  };
18
+ enum stop_reason
19
+ {
20
+ INVALID=-1,
21
+ OUT_OF_TOKENS=0,
22
+ EOS_TOKEN=1,
23
+ CUSTOM_STOPPER=2,
24
+ };
25
  struct load_model_inputs
26
  {
27
  const int threads;
 
44
  const int debugmode = 0;
45
  const int forceversion = 0;
46
  const int gpulayers = 0;
47
+ const float rope_freq_scale = 1.0f;
48
+ const float rope_freq_base = 10000.0f;
49
  const char * banned_tokens[ban_token_max];
50
+ const float tensor_split[tensor_split_max];
51
  };
52
  struct generation_inputs
53
  {
 
84
  extern bool generation_finished;
85
  extern float last_eval_time;
86
  extern float last_process_time;
87
+ extern int last_token_count;
88
+ extern stop_reason last_stop_reason;
ggml-cuda.cu CHANGED
@@ -13,6 +13,8 @@
13
  #include "ggml-cuda.h"
14
  #include "ggml.h"
15
 
 
 
16
  #if defined(_MSC_VER)
17
  #pragma warning(disable: 4244 4267) // possible loss of data
18
  #endif
@@ -74,7 +76,7 @@ typedef void (*ggml_cuda_op_t)(
74
 
75
  #define QK4_0 32
76
  #define QR4_0 2
77
- #define QI4_0 4
78
  typedef struct {
79
  half d; // delta
80
  uint8_t qs[QK4_0 / 2]; // nibbles / quants
@@ -83,7 +85,7 @@ static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0
83
 
84
  #define QK4_1 32
85
  #define QR4_1 2
86
- #define QI4_1 4
87
  typedef struct {
88
  half d; // delta
89
  half m; // min
@@ -93,7 +95,7 @@ static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong
93
 
94
  #define QK5_0 32
95
  #define QR5_0 2
96
- #define QI5_0 4
97
  typedef struct {
98
  half d; // delta
99
  uint8_t qh[4]; // 5-th bit of quants
@@ -103,7 +105,7 @@ static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5
103
 
104
  #define QK5_1 32
105
  #define QR5_1 2
106
- #define QI5_1 4
107
  typedef struct {
108
  half d; // delta
109
  half m; // min
@@ -114,7 +116,7 @@ static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) +
114
 
115
  #define QK8_0 32
116
  #define QR8_0 1
117
- #define QI8_0 8
118
  typedef struct {
119
  half d; // delta
120
  int8_t qs[QK8_0]; // quants
@@ -123,7 +125,7 @@ static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 blo
123
 
124
  #define QK8_1 32
125
  #define QR8_1 1
126
- #define QI8_1 8
127
  typedef struct {
128
  half d; // delta
129
  half s; // unquantized sum
@@ -143,6 +145,8 @@ typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_
143
  #define K_SCALE_SIZE 12
144
  #endif
145
 
 
 
146
  typedef struct {
147
  uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
148
  uint8_t qs[QK_K/4]; // quants
@@ -151,6 +155,8 @@ typedef struct {
151
  } block_q2_K;
152
  static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
153
 
 
 
154
  typedef struct {
155
  uint8_t hmask[QK_K/8]; // quants - high bit
156
  uint8_t qs[QK_K/4]; // quants - low 2 bits
@@ -163,6 +169,8 @@ typedef struct {
163
  } block_q3_K;
164
  //static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
165
 
 
 
166
  #ifdef GGML_QKK_64
167
  typedef struct {
168
  half d[2]; // super-block scales/mins
@@ -180,6 +188,8 @@ typedef struct {
180
  static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
181
  #endif
182
 
 
 
183
  #ifdef GGML_QKK_64
184
  typedef struct {
185
  half d; // super-block scale
@@ -199,6 +209,8 @@ typedef struct {
199
  static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
200
  #endif
201
 
 
 
202
  typedef struct {
203
  uint8_t ql[QK_K/2]; // quants, lower 4 bits
204
  uint8_t qh[QK_K/4]; // quants, upper 2 bits
@@ -208,10 +220,11 @@ typedef struct {
208
  static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
209
 
210
  #define WARP_SIZE 32
211
- #define MATRIX_ROW_PADDING 256 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
212
 
213
  #define CUDA_ADD_BLOCK_SIZE 256
214
  #define CUDA_MUL_BLOCK_SIZE 256
 
215
  #define CUDA_SILU_BLOCK_SIZE 256
216
  #define CUDA_CPY_BLOCK_SIZE 32
217
  #define CUDA_SCALE_BLOCK_SIZE 256
@@ -239,13 +252,13 @@ struct ggml_tensor_extra_gpu {
239
  cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
240
  };
241
 
242
- static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
243
  const int i = blockDim.x*blockIdx.x + threadIdx.x;
244
 
245
- if (i >= k) {
246
  return;
247
  }
248
- dst[i] = x[i] + y[i];
249
  }
250
 
251
  static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
@@ -266,6 +279,19 @@ static __global__ void mul_f32(const float * x, const float * y, float * dst, co
266
  dst[i] = x[i] * y[i%ky];
267
  }
268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  static __global__ void silu_f32(const float * x, float * dst, const int k) {
270
  const int i = blockDim.x*blockIdx.x + threadIdx.x;
271
 
@@ -275,16 +301,44 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) {
275
  dst[i] = x[i] / (1.0f + expf(-x[i]));
276
  }
277
 
278
- static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
279
  const int row = blockIdx.x*blockDim.y + threadIdx.y;
280
  const int tid = threadIdx.x;
281
 
282
- const float eps = 1e-6;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
 
284
  float tmp = 0.0f; // partial sum for thread in warp
285
 
286
- for (int i = 0; i < ncols; i += WARP_SIZE) {
287
- const int col = i + tid;
288
  const float xi = x[row*ncols + col];
289
  tmp += xi * xi;
290
  }
@@ -296,10 +350,9 @@ static __global__ void rms_norm_f32(const float * x, float * dst, const int ncol
296
  }
297
 
298
  const float mean = tmp / ncols;
299
- const float scale = 1.0f / sqrtf(mean + eps);
300
 
301
- for (int i = 0; i < ncols; i += WARP_SIZE) {
302
- const int col = i + tid;
303
  dst[row*ncols + col] = scale * x[row*ncols + col];
304
  }
305
  }
@@ -880,12 +933,18 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
880
  uint16_t aux[4];
881
  const uint8_t * sc = (const uint8_t *)aux;
882
 
 
 
 
 
 
 
 
 
883
  float tmp = 0; // partial sum for thread in warp
884
 
885
  for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
886
 
887
- const uint8_t * q1 = x[i].qs + q_offset;
888
- const uint8_t * q2 = q1 + 64;
889
  const float * y1 = yy + i*QK_K + y_offset;
890
  const float * y2 = y1 + 128;
891
 
@@ -898,14 +957,41 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
898
  aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
899
  aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
900
 
 
 
 
 
 
 
 
 
 
901
  float4 s = {0.f, 0.f, 0.f, 0.f};
902
  float smin = 0;
903
- for (int l = 0; l < n; ++l) {
904
- s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
905
- s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
906
  smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
907
  }
908
- tmp += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
909
 
910
  }
911
  #else
@@ -985,10 +1071,12 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
985
  uint16_t aux[4];
986
  const uint8_t * sc = (const uint8_t *)aux;
987
 
 
 
 
988
  for (int i = ix; i < num_blocks_per_row; i += 2) {
989
 
990
  const uint8_t * ql1 = x[i].qs + q_offset;
991
- const uint8_t * ql2 = ql1 + 64;
992
  const uint8_t * qh = x[i].qh + l0;
993
  const float * y1 = yy + i*QK_K + y_offset;
994
  const float * y2 = y1 + 128;
@@ -1004,15 +1092,25 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
1004
 
1005
  float4 sum = {0.f, 0.f, 0.f, 0.f};
1006
  float smin = 0;
 
 
 
 
 
 
 
 
 
 
1007
  for (int l = 0; l < n; ++l) {
1008
- sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
1009
- + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
1010
- sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
1011
- + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
1012
- sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
1013
- + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
1014
- sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
1015
- + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
1016
  smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
1017
  + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
1018
  }
@@ -1228,8 +1326,9 @@ static __global__ void dequantize_block(const void * __restrict__ vx, float * __
1228
  y[iybs + iqs + y_offset] = v.y;
1229
  }
1230
 
1231
- static __device__ __forceinline__ float vec_dot_q4_0_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1232
- #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
 
1233
  const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
1234
 
1235
  int vi;
@@ -1250,11 +1349,12 @@ static __device__ __forceinline__ float vec_dot_q4_0_q8_1(const void * __restric
1250
  return sumi*d;
1251
  #else
1252
  return 0.0f; // only to satisfy the compiler
1253
- #endif // __CUDA_ARCH__ >= 600
1254
  }
1255
 
1256
- static __device__ __forceinline__ float vec_dot_q4_1_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1257
- #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
 
1258
  const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
1259
 
1260
  const int vi = *((int *) &bq4_1->qs[sizeof(int) * (iqs + 0)]);
@@ -1275,11 +1375,12 @@ static __device__ __forceinline__ float vec_dot_q4_1_q8_1(const void * __restric
1275
  return sumi*d + m*s / QI4_1; // scale sum by QI4_1 because there are QI4_1 threads working on this block
1276
  #else
1277
  return 0.0f; // only to satisfy the compiler
1278
- #endif // __CUDA_ARCH__ >= 600
1279
  }
1280
 
1281
- static __device__ __forceinline__ float vec_dot_q5_0_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1282
- #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
 
1283
  const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
1284
 
1285
  int qs;
@@ -1310,11 +1411,12 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1(const void * __restric
1310
  return sumi*d;
1311
  #else
1312
  return 0.0f; // only to satisfy the compiler
1313
- #endif // __CUDA_ARCH__ >= 600
1314
  }
1315
 
1316
- static __device__ __forceinline__ float vec_dot_q5_1_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1317
- #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
 
1318
  const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
1319
 
1320
  const int qs = *((int *) &bq5_1->qs[sizeof(int) * (iqs + 0)]);
@@ -1344,11 +1446,12 @@ static __device__ __forceinline__ float vec_dot_q5_1_q8_1(const void * __restric
1344
  return sumi*d + m*s / QI5_1; // scale sum by QI5_1 because there are QI5_1 threads working on this block
1345
  #else
1346
  return 0.0f; // only to satisfy the compiler
1347
- #endif // __CUDA_ARCH__ >= 600
1348
  }
1349
 
1350
- static __device__ __forceinline__ float vec_dot_q8_0_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1351
- #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics
 
1352
  const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
1353
 
1354
  int vi;
@@ -1363,7 +1466,342 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1(const void * __restric
1363
  return sumi*d;
1364
  #else
1365
  return 0.0f; // only to satisfy the compiler
1366
- #endif // __CUDA_ARCH__ >= 600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367
  }
1368
 
1369
  template <int qk, int qi, typename block_q_t, vec_dot_q_cuda_t vec_dot_q_cuda>
@@ -1386,7 +1824,7 @@ static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void *
1386
  for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
1387
  const int ibx = row*blocks_per_row + i + threadIdx.x / qi; // x block index
1388
 
1389
- const int iby = i + threadIdx.x / qi; // y block index
1390
 
1391
  const int iqs = threadIdx.x % qi; // x block quant index when casting the quants to int
1392
 
@@ -1472,11 +1910,15 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
1472
  }
1473
  }
1474
 
1475
- static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int nchannels_x) {
 
 
 
1476
  const half * x = (const half *) vx;
1477
 
1478
  const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
1479
  const int channel = blockDim.z*blockIdx.z + threadIdx.z;
 
1480
 
1481
  const int nrows_y = ncols_x;
1482
  const int nrows_dst = nrows_x;
@@ -1492,7 +1934,7 @@ static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const
1492
  }
1493
 
1494
  // x is transposed and permuted
1495
- const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x;
1496
  const float xi = __half2float(x[ix]);
1497
 
1498
  const int row_y = col_x;
@@ -1520,12 +1962,13 @@ static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const
1520
 
1521
  static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
1522
  const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
1523
- const int row_stride_x, const int channel_stride_x) {
1524
 
1525
  const half * x = (const half *) vx;
1526
 
1527
  const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
1528
  const int channel = blockDim.z*blockIdx.z + threadIdx.z;
 
1529
 
1530
  const int nrows_y = ncols_x;
1531
  const int nrows_dst = nrows_x;
@@ -1542,7 +1985,7 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
1542
  break;
1543
  }
1544
 
1545
- const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x;
1546
  const float xi = __half2float(x[ix]);
1547
 
1548
  const int row_y = col_x;
@@ -1624,6 +2067,40 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
1624
  dst[i + 1] = x0*sin_theta + x1*cos_theta;
1625
  }
1626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627
  static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
1628
  const int col = blockDim.x*blockIdx.x + threadIdx.x;
1629
  const int row = blockDim.y*blockIdx.y + threadIdx.y;
@@ -1689,9 +2166,9 @@ static __global__ void scale_f32(const float * x, float * dst, const float scale
1689
  dst[i] = scale * x[i];
1690
  }
1691
 
1692
- static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
1693
- const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
1694
- add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
1695
  }
1696
 
1697
  static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
@@ -1704,15 +2181,26 @@ static void mul_f32_cuda(const float * x, const float * y, float * dst, const in
1704
  mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
1705
  }
1706
 
 
 
 
 
 
1707
  static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
1708
  const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
1709
  silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
1710
  }
1711
 
1712
- static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 
 
 
 
 
 
1713
  GGML_ASSERT(ncols % WARP_SIZE == 0);
1714
  const dim3 block_dims(WARP_SIZE, 1, 1);
1715
- rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
1716
  }
1717
 
1718
  static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
@@ -1874,7 +2362,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f
1874
  }
1875
 
1876
  static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
1877
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
1878
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
1879
  const dim3 block_nums(1, block_num_y, 1);
1880
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@@ -1883,7 +2371,7 @@ static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float *
1883
  }
1884
 
1885
  static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
1886
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
1887
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
1888
  const dim3 block_nums(1, block_num_y, 1);
1889
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@@ -1892,7 +2380,7 @@ static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float *
1892
  }
1893
 
1894
  static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
1895
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
1896
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
1897
  const dim3 block_nums(1, block_num_y, 1);
1898
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@@ -1901,7 +2389,7 @@ static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float *
1901
  }
1902
 
1903
  static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
1904
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
1905
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
1906
  const dim3 block_nums(1, block_num_y, 1);
1907
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@@ -1910,7 +2398,7 @@ static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float *
1910
  }
1911
 
1912
  static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
1913
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
1914
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
1915
  const dim3 block_nums(1, block_num_y, 1);
1916
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@@ -1918,6 +2406,57 @@ static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float *
1918
  <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
1919
  }
1920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921
  static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
1922
  const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
1923
  dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
@@ -1961,20 +2500,23 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
1961
  }
1962
  }
1963
 
1964
- static void ggml_mul_mat_p021_f16_f32_cuda(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) {
1965
- const dim3 block_nums(1, nrows_x, nchannels_x);
 
 
 
1966
  const dim3 block_dims(WARP_SIZE, 1, 1);
1967
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x);
1968
  }
1969
 
1970
  static void ggml_mul_mat_vec_nc_f16_f32_cuda(
1971
  const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
1972
- const int nchannels_x, const int channel_stride_x, cudaStream_t stream) {
1973
 
1974
- const dim3 block_nums(1, nrows_x, nchannels_x);
1975
  const dim3 block_dims(WARP_SIZE, 1, 1);
1976
  mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
1977
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x);
1978
  }
1979
 
1980
  static void ggml_cpy_f32_f32_cuda(
@@ -2010,6 +2552,14 @@ static void rope_f32_cuda(const float * x, float * dst, const int ncols, const i
2010
  rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
2011
  }
2012
 
 
 
 
 
 
 
 
 
2013
  static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
2014
  const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
2015
  const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
@@ -2118,7 +2668,9 @@ static size_t g_scratch_offset = 0;
2118
 
2119
  static int g_device_count = -1;
2120
  static int g_main_device = 0;
 
2121
  static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
 
2122
  static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
2123
 
2124
  static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
@@ -2141,7 +2693,9 @@ void ggml_init_cublas() {
2141
  g_tensor_split[id] = total_vram;
2142
  total_vram += prop.totalGlobalMem;
2143
 
 
2144
  g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
 
2145
  }
2146
  for (int id = 0; id < g_device_count; ++id) {
2147
  g_tensor_split[id] /= total_vram;
@@ -2166,6 +2720,9 @@ void ggml_init_cublas() {
2166
  }
2167
 
2168
  void ggml_cuda_set_tensor_split(const float * tensor_split) {
 
 
 
2169
  bool all_zero = true;
2170
  for (int i = 0; i < g_device_count; ++i) {
2171
  if (tensor_split[i] != 0.0f) {
@@ -2262,16 +2819,19 @@ inline void ggml_cuda_op_add(
2262
 
2263
  GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
2264
  GGML_ASSERT(src1_ddf_i != nullptr);
2265
- GGML_ASSERT(dst_ddf_i != nullptr);
2266
 
2267
- const int64_t ne0 = src0->ne[0];
2268
  const int64_t i01_diff = i01_high - i01_low;
2269
 
 
 
 
2270
  // compute
2271
  if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
2272
- add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main);
2273
  } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
2274
- add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne0*i01_diff, cudaStream_main);
2275
  } else {
2276
  GGML_ASSERT(false);
2277
  }
@@ -2290,27 +2850,42 @@ inline void ggml_cuda_op_mul(
2290
 
2291
  GGML_ASSERT(src0_ddf_i != nullptr);
2292
  GGML_ASSERT(src1_ddf_i != nullptr);
2293
- GGML_ASSERT(dst_ddf_i != nullptr);
2294
 
2295
  const int64_t ne00 = src0->ne[0];
 
2296
 
2297
  const int64_t ne10 = src1->ne[0];
2298
  const int64_t ne11 = src1->ne[1];
2299
 
2300
- for (int64_t i01 = i01_low; i01 < i01_high; i01++) {
2301
- const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0
2302
 
2303
- float * src0_ddf_i01 = src0_ddf_i + i01*ne00;
2304
- float * src1_ddf_i01 = src1_ddf_i + i11*ne10;
2305
- float * dst_ddf_i01 = dst_ddf_i + i01*ne00;
 
 
2306
 
2307
- // compute
2308
- mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
2309
- }
 
 
 
 
 
 
 
2310
 
 
 
 
 
2311
  (void) dst;
2312
  (void) src0_ddq_i;
 
2313
  (void) i02;
 
2314
  }
2315
 
2316
  inline void ggml_cuda_op_silu(
@@ -2335,6 +2910,28 @@ inline void ggml_cuda_op_silu(
2335
  (void) i1;
2336
  }
2337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2338
  inline void ggml_cuda_op_rms_norm(
2339
  const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
2340
  float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
@@ -2346,8 +2943,11 @@ inline void ggml_cuda_op_rms_norm(
2346
  const int64_t ne00 = src0->ne[0];
2347
  const int64_t i01_diff = i01_high - i01_low;
2348
 
 
 
 
2349
  // compute
2350
- rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
2351
 
2352
  (void) src1;
2353
  (void) dst;
@@ -2375,18 +2975,27 @@ inline void ggml_cuda_op_mul_mat_vec(
2375
  int id;
2376
  CUDA_CHECK(cudaGetDevice(&id));
2377
 
2378
- const bool mul_mat_vec_q_implemented = src0->type == GGML_TYPE_Q4_0 ||
 
2379
  src0->type == GGML_TYPE_Q4_1 ||
2380
  src0->type == GGML_TYPE_Q5_0 ||
2381
  src0->type == GGML_TYPE_Q5_1 ||
2382
  src0->type == GGML_TYPE_Q8_0;
2383
-
2384
- const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= 600 && mul_mat_vec_q_implemented;
 
 
 
 
 
 
 
 
2385
  #endif
2386
 
2387
  if (use_mul_mat_vec_q) {
2388
- int64_t padded_row_size = ne00 + MATRIX_ROW_PADDING - 1;
2389
- padded_row_size -= padded_row_size % MATRIX_ROW_PADDING;
2390
  size_t as;
2391
  void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
2392
  quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main);
@@ -2407,6 +3016,21 @@ inline void ggml_cuda_op_mul_mat_vec(
2407
  case GGML_TYPE_Q8_0:
2408
  mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
2409
  break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2410
  default:
2411
  GGML_ASSERT(false);
2412
  break;
@@ -2538,20 +3162,31 @@ inline void ggml_cuda_op_rope(
2538
  const int64_t ne00 = src0->ne[0];
2539
  const int64_t i01_diff = i01_high - i01_low;
2540
 
2541
- const int n_past = ((int32_t *) src1->data)[0];
2542
- const int n_dims = ((int32_t *) src1->data)[1];
2543
- const int mode = ((int32_t *) src1->data)[2];
2544
- const int n_ctx = ((int32_t *) src1->data)[3];
2545
- GGML_ASSERT(mode == 0);
2546
 
2547
- const float theta_scale = get_theta_scale(n_dims,n_past,n_ctx);
2548
- const float p0 = ((mode & 1) == 0 ? n_past + i02 : i02);
 
2549
 
2550
- const float p = get_ntk_rope_scale_mode()?p0:(n_ctx <= GGML_TRAINING_CTX ? p0 : p0 * GGML_TRAINING_CTX / n_ctx);
 
 
 
2551
 
2552
  // compute
2553
- rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
 
 
 
 
 
 
2554
 
 
2555
  (void) dst;
2556
  (void) src0_ddq_i;
2557
  (void) src1_ddf_i;
@@ -2570,11 +3205,12 @@ inline void ggml_cuda_op_diag_mask_inf(
2570
  const int64_t ne01 = src0->ne[1];
2571
  const int64_t i01_diff = i01_high - i01_low;
2572
 
2573
- const int n_past = ((int32_t *) src1->data)[0];
2574
 
2575
  // compute
2576
  diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
2577
 
 
2578
  (void) dst;
2579
  (void) src0_ddq_i;
2580
  (void) src1_ddf_i;
@@ -2642,6 +3278,9 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
2642
  const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
2643
  const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
2644
  const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
 
 
 
2645
 
2646
  const int64_t ne0 = dst->ne[0];
2647
  const int64_t ne1 = dst->ne[1];
@@ -2653,12 +3292,19 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
2653
  GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
2654
 
2655
  // strides for iteration over dims 3 and 2
2656
- const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03;
2657
- const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1;
 
2658
  const int64_t src0_stride = ne00 * ne01 * stride_mod;
2659
  const int64_t src1_stride = ne10 * ne11 * stride_mod;
2660
  const int64_t dst_stride = ne0 * ne1 * stride_mod;
2661
 
 
 
 
 
 
 
2662
  const size_t src0_ts = ggml_type_size(src0->type);
2663
  const size_t src0_bs = ggml_blck_size(src0->type);
2664
 
@@ -2675,6 +3321,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
2675
  dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
2676
 
2677
  const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
 
2678
 
2679
  const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
2680
 
@@ -2711,7 +3358,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
2711
  row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
2712
  } else {
2713
  row_low = 0;
2714
- row_high = nrows0;
2715
  }
2716
  if (row_low == row_high) {
2717
  continue;
@@ -2759,16 +3406,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
2759
  dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
2760
  }
2761
 
2762
- const int64_t i03_max = flatten_rows ? 1 : ne03;
2763
- const int64_t i02_max = flatten_rows ? 1 : ne02;
2764
- const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
2765
-
2766
  for (int64_t i03 = 0; i03 < i03_max; i03++) {
2767
  const int64_t i13 = i03 % ne13;
2768
  for (int64_t i02 = 0; i02 < i02_max; i02++) {
2769
  const int64_t i12 = i02 % ne12;
2770
 
2771
- const int64_t i0 = i03*ne02 + i02;
2772
 
2773
  // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
2774
  const int64_t i0_offset_low = row_low/rows_per_iter;
@@ -2802,10 +3445,10 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
2802
  const int64_t i11 = i13*ne12 + i12;
2803
 
2804
  // for split tensors the data begins at i0 == i0_offset_low
2805
- char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
2806
- float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
2807
  float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
2808
- float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
2809
 
2810
  // for split tensors the data pointer needs to be rounded down
2811
  // to the bin edge for i03, i02 bins beyond the first
@@ -2844,11 +3487,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
2844
  }
2845
  }
2846
 
2847
- if (!src0_on_device || !src0_is_contiguous) {
2848
  if (src0_is_f32) {
2849
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
2850
  } else {
2851
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
2852
  }
2853
  }
2854
 
@@ -2953,11 +3596,21 @@ void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
2953
  ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
2954
  }
2955
 
 
 
 
 
 
2956
  void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
2957
  GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
2958
  ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
2959
  }
2960
 
 
 
 
 
 
2961
  void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
2962
  GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
2963
  ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
@@ -2992,6 +3645,8 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
2992
  const int64_t ne01 = src0->ne[1];
2993
  const int64_t ne02 = src0->ne[2];
2994
 
 
 
2995
  CUDA_CHECK(cudaSetDevice(g_main_device));
2996
  cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
2997
 
@@ -3004,7 +3659,7 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
3004
  struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
3005
  float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
3006
 
3007
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main);
3008
  }
3009
 
3010
  void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
@@ -3018,6 +3673,8 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
3018
  const int64_t ne01 = src0->ne[1];
3019
  const int64_t ne02 = src0->ne[2];
3020
 
 
 
3021
  const int64_t nb01 = src0->nb[1];
3022
  const int64_t nb02 = src0->nb[2];
3023
 
@@ -3036,7 +3693,7 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
3036
  const int row_stride_x = nb01 / sizeof(half);
3037
  const int channel_stride_x = nb02 / sizeof(half);
3038
 
3039
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
3040
  }
3041
 
3042
  void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -3113,6 +3770,11 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
3113
  (void) dst;
3114
  }
3115
 
 
 
 
 
 
3116
  void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3117
  GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
3118
  ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
@@ -3172,7 +3834,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
3172
  size_t size = ggml_nbytes_split(tensor, nrows_split);
3173
  const size_t original_size = size;
3174
 
3175
- // pad last row to a multiple of 256 elements to avoid out-of-bounds memory accesses
3176
  if (ne0 % MATRIX_ROW_PADDING != 0) {
3177
  size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
3178
  * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
@@ -3188,7 +3850,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
3188
  }
3189
 
3190
 
3191
- cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
3192
 
3193
  extra->data_device[id] = buf;
3194
 
@@ -3222,6 +3884,22 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) {
3222
  delete extra;
3223
  }
3224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3225
  void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
3226
  if (scratch && g_scratch_size == 0) {
3227
  return;
@@ -3230,7 +3908,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
3230
  // recursively assign CUDA buffers until a compute tensor is found
3231
  if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
3232
  const ggml_op src0_op = tensor->src[0]->op;
3233
- if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW) {
3234
  ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
3235
  }
3236
  }
@@ -3239,8 +3917,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
3239
  }
3240
 
3241
  tensor->backend = GGML_BACKEND_GPU;
3242
- struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
3243
- memset(extra, 0, sizeof(*extra));
3244
 
3245
  const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
3246
  tensor->op == GGML_OP_VIEW ||
@@ -3253,12 +3930,14 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
3253
  char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
3254
  size_t offset = 0;
3255
  if (tensor->op == GGML_OP_VIEW) {
3256
- memcpy(&offset, tensor->src[2]->data, sizeof(size_t));
3257
  }
 
3258
  extra->data_device[g_main_device] = src0_ddc + offset;
3259
  } else if (tensor->op == GGML_OP_CPY) {
3260
  struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
3261
  void * src1_ddv = src1_extra->data_device[g_main_device];
 
3262
  extra->data_device[g_main_device] = src1_ddv;
3263
  } else if (scratch) {
3264
  GGML_ASSERT(size <= g_scratch_size);
@@ -3271,6 +3950,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
3271
  CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
3272
  g_scratch_buffer = data;
3273
  }
 
3274
  extra->data_device[g_main_device] = data + g_scratch_offset;
3275
 
3276
  g_scratch_offset += size;
@@ -3280,6 +3960,8 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
3280
  void * data;
3281
  CUDA_CHECK(cudaMalloc(&data, size));
3282
  CUDA_CHECK(cudaMemset(data, 0, size));
 
 
3283
  extra->data_device[g_main_device] = data;
3284
  }
3285
 
@@ -3332,6 +4014,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
3332
  || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
3333
 
3334
  switch (tensor->op) {
 
 
 
 
 
 
3335
  case GGML_OP_ADD:
3336
  if (!any_on_device) {
3337
  return false;
@@ -3344,11 +4032,28 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
3344
  }
3345
  func = ggml_cuda_mul;
3346
  break;
3347
- case GGML_OP_SILU:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3348
  if (!any_on_device) {
3349
  return false;
3350
  }
3351
- func = ggml_cuda_silu;
3352
  break;
3353
  case GGML_OP_RMS_NORM:
3354
  if (!any_on_device) {
@@ -3374,6 +4079,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
3374
  }
3375
  func = ggml_cuda_cpy;
3376
  break;
 
 
 
 
 
 
3377
  case GGML_OP_RESHAPE:
3378
  case GGML_OP_VIEW:
3379
  case GGML_OP_PERMUTE:
 
13
  #include "ggml-cuda.h"
14
  #include "ggml.h"
15
 
16
+ #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
17
+
18
  #if defined(_MSC_VER)
19
  #pragma warning(disable: 4244 4267) // possible loss of data
20
  #endif
 
76
 
77
  #define QK4_0 32
78
  #define QR4_0 2
79
+ #define QI4_0 (QK4_0 / (4 * QR4_0))
80
  typedef struct {
81
  half d; // delta
82
  uint8_t qs[QK4_0 / 2]; // nibbles / quants
 
85
 
86
  #define QK4_1 32
87
  #define QR4_1 2
88
+ #define QI4_1 (QK4_1 / (4 * QR4_1))
89
  typedef struct {
90
  half d; // delta
91
  half m; // min
 
95
 
96
  #define QK5_0 32
97
  #define QR5_0 2
98
+ #define QI5_0 (QK5_0 / (4 * QR5_0))
99
  typedef struct {
100
  half d; // delta
101
  uint8_t qh[4]; // 5-th bit of quants
 
105
 
106
  #define QK5_1 32
107
  #define QR5_1 2
108
+ #define QI5_1 (QK5_1 / (4 * QR5_1))
109
  typedef struct {
110
  half d; // delta
111
  half m; // min
 
116
 
117
  #define QK8_0 32
118
  #define QR8_0 1
119
+ #define QI8_0 (QK8_0 / (4 * QR8_0))
120
  typedef struct {
121
  half d; // delta
122
  int8_t qs[QK8_0]; // quants
 
125
 
126
  #define QK8_1 32
127
  #define QR8_1 1
128
+ #define QI8_1 (QK8_1 / (4 * QR8_1))
129
  typedef struct {
130
  half d; // delta
131
  half s; // unquantized sum
 
145
  #define K_SCALE_SIZE 12
146
  #endif
147
 
148
+ #define QR2_K 4
149
+ #define QI2_K (QK_K / (4*QR2_K))
150
  typedef struct {
151
  uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
152
  uint8_t qs[QK_K/4]; // quants
 
155
  } block_q2_K;
156
  static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
157
 
158
+ #define QR3_K 4
159
+ #define QI3_K (QK_K / (4*QR3_K))
160
  typedef struct {
161
  uint8_t hmask[QK_K/8]; // quants - high bit
162
  uint8_t qs[QK_K/4]; // quants - low 2 bits
 
169
  } block_q3_K;
170
  //static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
171
 
172
+ #define QR4_K 2
173
+ #define QI4_K (QK_K / (4*QR4_K))
174
  #ifdef GGML_QKK_64
175
  typedef struct {
176
  half d[2]; // super-block scales/mins
 
188
  static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
189
  #endif
190
 
191
+ #define QR5_K 2
192
+ #define QI5_K (QK_K / (4*QR5_K))
193
  #ifdef GGML_QKK_64
194
  typedef struct {
195
  half d; // super-block scale
 
209
  static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
210
  #endif
211
 
212
+ #define QR6_K 2
213
+ #define QI6_K (QK_K / (4*QR6_K))
214
  typedef struct {
215
  uint8_t ql[QK_K/2]; // quants, lower 4 bits
216
  uint8_t qh[QK_K/4]; // quants, upper 2 bits
 
220
  static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
221
 
222
  #define WARP_SIZE 32
223
+ #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
224
 
225
  #define CUDA_ADD_BLOCK_SIZE 256
226
  #define CUDA_MUL_BLOCK_SIZE 256
227
+ #define CUDA_GELU_BLOCK_SIZE 256
228
  #define CUDA_SILU_BLOCK_SIZE 256
229
  #define CUDA_CPY_BLOCK_SIZE 32
230
  #define CUDA_SCALE_BLOCK_SIZE 256
 
252
  cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
253
  };
254
 
255
+ static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
256
  const int i = blockDim.x*blockIdx.x + threadIdx.x;
257
 
258
+ if (i >= kx) {
259
  return;
260
  }
261
+ dst[i] = x[i] + y[i%ky];
262
  }
263
 
264
  static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
 
279
  dst[i] = x[i] * y[i%ky];
280
  }
281
 
282
+ static __global__ void gelu_f32(const float * x, float * dst, const int k) {
283
+ const float GELU_COEF_A = 0.044715f;
284
+ const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
285
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
286
+
287
+ if (i >= k) {
288
+ return;
289
+ }
290
+
291
+ float xi = x[i];
292
+ dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
293
+ }
294
+
295
  static __global__ void silu_f32(const float * x, float * dst, const int k) {
296
  const int i = blockDim.x*blockIdx.x + threadIdx.x;
297
 
 
301
  dst[i] = x[i] / (1.0f + expf(-x[i]));
302
  }
303
 
304
+ static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
305
  const int row = blockIdx.x*blockDim.y + threadIdx.y;
306
  const int tid = threadIdx.x;
307
 
308
+ const float eps = 1e-5f;
309
+
310
+ float mean = 0.0f;
311
+ float var = 0.0f;
312
+
313
+ for (int col = tid; col < ncols; col += WARP_SIZE) {
314
+ const float xi = x[row*ncols + col];
315
+ mean += xi;
316
+ var += xi * xi;
317
+ }
318
+
319
+ // sum up partial sums
320
+ #pragma unroll
321
+ for (int mask = 16; mask > 0; mask >>= 1) {
322
+ mean += __shfl_xor_sync(0xffffffff, mean, mask, 32);
323
+ var += __shfl_xor_sync(0xffffffff, var, mask, 32);
324
+ }
325
+
326
+ mean /= ncols;
327
+ var = var / ncols - mean * mean;
328
+ const float inv_var = rsqrtf(var + eps);
329
+
330
+ for (int col = tid; col < ncols; col += WARP_SIZE) {
331
+ dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_var;
332
+ }
333
+ }
334
+
335
+ static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
336
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
337
+ const int tid = threadIdx.x;
338
 
339
  float tmp = 0.0f; // partial sum for thread in warp
340
 
341
+ for (int col = tid; col < ncols; col += WARP_SIZE) {
 
342
  const float xi = x[row*ncols + col];
343
  tmp += xi * xi;
344
  }
 
350
  }
351
 
352
  const float mean = tmp / ncols;
353
+ const float scale = rsqrtf(mean + eps);
354
 
355
+ for (int col = tid; col < ncols; col += WARP_SIZE) {
 
356
  dst[row*ncols + col] = scale * x[row*ncols + col];
357
  }
358
  }
 
933
  uint16_t aux[4];
934
  const uint8_t * sc = (const uint8_t *)aux;
935
 
936
+ #if K_QUANTS_PER_ITERATION == 2
937
+ uint32_t q32[4];
938
+ const uint8_t * q4 = (const uint8_t *)q32;
939
+ #else
940
+ uint16_t q16[4];
941
+ const uint8_t * q4 = (const uint8_t *)q16;
942
+ #endif
943
+
944
  float tmp = 0; // partial sum for thread in warp
945
 
946
  for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
947
 
 
 
948
  const float * y1 = yy + i*QK_K + y_offset;
949
  const float * y2 = y1 + 128;
950
 
 
957
  aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
958
  aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
959
 
960
+ #if K_QUANTS_PER_ITERATION == 2
961
+ const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
962
+ const uint32_t * q2 = q1 + 16;
963
+
964
+ q32[0] = q1[0] & 0x0f0f0f0f;
965
+ q32[1] = q1[0] & 0xf0f0f0f0;
966
+ q32[2] = q2[0] & 0x0f0f0f0f;
967
+ q32[3] = q2[0] & 0xf0f0f0f0;
968
+
969
  float4 s = {0.f, 0.f, 0.f, 0.f};
970
  float smin = 0;
971
+ for (int l = 0; l < 4; ++l) {
972
+ s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
973
+ s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
974
  smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
975
  }
976
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
977
+ #else
978
+ const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
979
+ const uint16_t * q2 = q1 + 32;
980
+
981
+ q16[0] = q1[0] & 0x0f0f;
982
+ q16[1] = q1[0] & 0xf0f0;
983
+ q16[2] = q2[0] & 0x0f0f;
984
+ q16[3] = q2[0] & 0xf0f0;
985
+
986
+ float4 s = {0.f, 0.f, 0.f, 0.f};
987
+ float smin = 0;
988
+ for (int l = 0; l < 2; ++l) {
989
+ s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
990
+ s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
991
+ smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
992
+ }
993
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
994
+ #endif
995
 
996
  }
997
  #else
 
1071
  uint16_t aux[4];
1072
  const uint8_t * sc = (const uint8_t *)aux;
1073
 
1074
+ uint16_t q16[8];
1075
+ const uint8_t * q4 = (const uint8_t *)q16;
1076
+
1077
  for (int i = ix; i < num_blocks_per_row; i += 2) {
1078
 
1079
  const uint8_t * ql1 = x[i].qs + q_offset;
 
1080
  const uint8_t * qh = x[i].qh + l0;
1081
  const float * y1 = yy + i*QK_K + y_offset;
1082
  const float * y2 = y1 + 128;
 
1092
 
1093
  float4 sum = {0.f, 0.f, 0.f, 0.f};
1094
  float smin = 0;
1095
+ const uint16_t * q1 = (const uint16_t *)ql1;
1096
+ const uint16_t * q2 = q1 + 32;
1097
+ q16[0] = q1[0] & 0x0f0f;
1098
+ q16[1] = q1[8] & 0x0f0f;
1099
+ q16[2] = (q1[0] >> 4) & 0x0f0f;
1100
+ q16[3] = (q1[8] >> 4) & 0x0f0f;
1101
+ q16[4] = q2[0] & 0x0f0f;
1102
+ q16[5] = q2[8] & 0x0f0f;
1103
+ q16[6] = (q2[0] >> 4) & 0x0f0f;
1104
+ q16[7] = (q2[8] >> 4) & 0x0f0f;
1105
  for (int l = 0; l < n; ++l) {
1106
+ sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
1107
+ + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
1108
+ sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
1109
+ + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
1110
+ sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
1111
+ + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
1112
+ sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
1113
+ + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
1114
  smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
1115
  + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
1116
  }
 
1326
  y[iybs + iqs + y_offset] = v.y;
1327
  }
1328
 
1329
+ static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
1330
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1331
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1332
  const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
1333
 
1334
  int vi;
 
1349
  return sumi*d;
1350
  #else
1351
  return 0.0f; // only to satisfy the compiler
1352
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1353
  }
1354
 
1355
+ static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
1356
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1357
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1358
  const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
1359
 
1360
  const int vi = *((int *) &bq4_1->qs[sizeof(int) * (iqs + 0)]);
 
1375
  return sumi*d + m*s / QI4_1; // scale sum by QI4_1 because there are QI4_1 threads working on this block
1376
  #else
1377
  return 0.0f; // only to satisfy the compiler
1378
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1379
  }
1380
 
1381
+ static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
1382
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1383
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1384
  const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
1385
 
1386
  int qs;
 
1411
  return sumi*d;
1412
  #else
1413
  return 0.0f; // only to satisfy the compiler
1414
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1415
  }
1416
 
1417
+ static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
1418
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1419
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1420
  const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
1421
 
1422
  const int qs = *((int *) &bq5_1->qs[sizeof(int) * (iqs + 0)]);
 
1446
  return sumi*d + m*s / QI5_1; // scale sum by QI5_1 because there are QI5_1 threads working on this block
1447
  #else
1448
  return 0.0f; // only to satisfy the compiler
1449
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1450
  }
1451
 
1452
+ static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
1453
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1454
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1455
  const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
1456
 
1457
  int vi;
 
1466
  return sumi*d;
1467
  #else
1468
  return 0.0f; // only to satisfy the compiler
1469
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1470
+ }
1471
+
1472
+ static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
1473
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1474
+
1475
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1476
+ const block_q2_K * bq2_K = (const block_q2_K *) vbq;
1477
+
1478
+ const int bq8_offset = QR2_K * (iqs / QI8_1);
1479
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
1480
+
1481
+ float sumf_d = 0.0f;
1482
+ float sumf_m = 0.0f;
1483
+
1484
+ const float d = bq2_K->d;
1485
+ const float dmin = bq2_K->dmin;
1486
+
1487
+ const int v = *((int *) &bq2_K->qs[sizeof(int) * iqs]);
1488
+
1489
+ for (int i = 0; i < QR2_K; ++i) {
1490
+ const int sc = bq2_K->scales[scale_offset + 2*i];
1491
+
1492
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
1493
+ const float d8i = bq8i->d;
1494
+
1495
+ const int vi = (v >> (2*i)) & 0x03030303;
1496
+ const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
1497
+
1498
+ sumf_d += d8i * (__dp4a(vi, ui, 0) * (sc & 0xF)); // SIMD dot product
1499
+ sumf_m += d8i * (__dp4a(0x01010101, ui, 0) * (sc >> 4)); // multiply constant q2_K part with sum of q8_1 values
1500
+ }
1501
+
1502
+ return d*sumf_d - dmin*sumf_m;
1503
+ #else
1504
+ return 0.0f; // only to satisfy the compiler
1505
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1506
+ }
1507
+
1508
+ static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
1509
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1510
+
1511
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1512
+ const block_q3_K * bq3_K = (const block_q3_K *) vbq;
1513
+
1514
+ const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
1515
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
1516
+
1517
+ float sumf = 0.0f;
1518
+
1519
+ const float d = bq3_K->d;
1520
+
1521
+ int vl;
1522
+ memcpy(&vl, &bq3_K->qs[sizeof(int) * iqs], sizeof(int));
1523
+
1524
+ int vh;
1525
+ memcpy(&vh, &bq3_K->hmask[sizeof(int) * (iqs % (QI3_K/2))], sizeof(int));
1526
+ vh = ~vh; // invert the mask so that a 0/1 results in 4/0 being subtracted
1527
+ vh >>= bq8_offset;
1528
+
1529
+ for (int i = 0; i < QR3_K; ++i) {
1530
+ const int isc = scale_offset + 2*i;
1531
+
1532
+ const int isc_low = isc % (QK_K/32);
1533
+ const int sc_shift_low = 4 * (isc / (QK_K/32));
1534
+ const int sc_low = (bq3_K->scales[isc_low] >> sc_shift_low) & 0xF;
1535
+
1536
+ const int isc_high = isc % (QK_K/64);
1537
+ const int sc_shift_high = 2 * (isc / (QK_K/64));
1538
+ const int sc_high = ((bq3_K->scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
1539
+
1540
+ const int sc = (sc_low | sc_high) - 32;
1541
+
1542
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
1543
+ const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % QI8_1)]);
1544
+ const float d8i = bq8i->d;
1545
+
1546
+ const int vil = (vl >> (2*i)) & 0x03030303;
1547
+
1548
+ const int vih = ((vh >> i) << 2) & 0x04040404;
1549
+
1550
+ const int vi = __vsubss4(vil, vih);
1551
+
1552
+ sumf += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product
1553
+ }
1554
+
1555
+ return d*sumf;
1556
+ #else
1557
+ return 0.0f; // only to satisfy the compiler
1558
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1559
+ }
1560
+
1561
+ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
1562
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1563
+
1564
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1565
+ const block_q4_K * bq4_K = (const block_q4_K *) vbq;
1566
+
1567
+ float sumf_d = 0.0f;
1568
+ float sumf_m = 0.0f;
1569
+
1570
+ #ifndef GGML_QKK_64
1571
+
1572
+ // iqs is in 0...15. bq8_offset = 2 * (iqs/4) -> bq8_offset = 0, 2, 4, 6
1573
+ const int bq8_offset = QR4_K * (iqs / (QI8_1/2));
1574
+
1575
+ const float d = bq4_K->d;
1576
+ const float dmin = bq4_K->dmin;
1577
+
1578
+ // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
1579
+ // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
1580
+ // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
1581
+ // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
1582
+
1583
+ const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * (iqs%4));
1584
+ const int v1 = q4[0];
1585
+ const int v2 = q4[4];
1586
+
1587
+ const uint16_t * scales = (const uint16_t *)bq4_K->scales;
1588
+ uint16_t aux[2];
1589
+ const int j = bq8_offset/2;
1590
+ if (j < 2) {
1591
+ aux[0] = scales[j+0] & 0x3f3f;
1592
+ aux[1] = scales[j+2] & 0x3f3f;
1593
+ } else {
1594
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
1595
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
1596
+ }
1597
+ const uint8_t * sc = (const uint8_t *)aux;
1598
+ const uint8_t * m = sc + 2;
1599
+
1600
+ for (int i = 0; i < QR4_K; ++i) {
1601
+
1602
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
1603
+ const float d8i = bq8i->d;
1604
+ const int * q8 = (const int *)bq8i->qs + (iqs%4);
1605
+ const int ui1 = q8[0];
1606
+ const int ui2 = q8[4];
1607
+
1608
+ const int vi1 = (v1 >> (4*i)) & 0x0F0F0F0F;
1609
+ const int vi2 = (v2 >> (4*i)) & 0x0F0F0F0F;
1610
+
1611
+ const int dot1 = __dp4a(vi2, ui2, __dp4a(vi1, ui1, 0)); // SIMD dot product
1612
+ const int dot2 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
1613
+
1614
+ sumf_d += d8i * (dot1 * sc[i]);
1615
+ sumf_m += d8i * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
1616
+ }
1617
+
1618
+ return d*sumf_d - dmin*sumf_m;
1619
+
1620
+ #else
1621
+
1622
+ uint16_t aux16[2];
1623
+ const uint8_t * s = (const uint8_t *)aux16;
1624
+
1625
+ const uint16_t * a = (const uint16_t *)bq4_K->scales;
1626
+ aux16[0] = a[0] & 0x0f0f;
1627
+ aux16[1] = (a[0] >> 4) & 0x0f0f;
1628
+
1629
+ const float dall = bq4_K->d[0];
1630
+ const float dmin = bq4_K->d[1];
1631
+
1632
+ const float d8_1 = bq8_1[0].d;
1633
+ const float d8_2 = bq8_1[1].d;
1634
+
1635
+ const int ui1 = *((const int *)bq8_1[0].qs + iqs);
1636
+ const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4);
1637
+ const int ui3 = *((const int *)bq8_1[1].qs + iqs);
1638
+ const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4);
1639
+
1640
+ const int * q4 = (const int *)bq4_K->qs + iqs;
1641
+ const int v1 = q4[0];
1642
+ const int v2 = q4[4];
1643
+
1644
+ const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
1645
+ const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
1646
+ const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
1647
+ const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
1648
+
1649
+ sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
1650
+ sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
1651
+
1652
+ return dall * sumf_d - dmin * sumf_m;
1653
+
1654
+ #endif
1655
+
1656
+ #else
1657
+ return 0.0f; // only to satisfy the compiler
1658
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1659
+ }
1660
+
1661
+ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
1662
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1663
+
1664
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1665
+ const block_q5_K * bq5_K = (const block_q5_K *) vbq;
1666
+
1667
+ #ifndef GGML_QKK_64
1668
+
1669
+ const int bq8_offset = QR5_K * (iqs / (QI8_1/2));
1670
+ const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * (iqs%4));
1671
+ const int * qh = (const int *)(bq5_K->qh + 4 * (iqs%4));
1672
+
1673
+ float sumf_d = 0.0f;
1674
+ float sumf_m = 0.0f;
1675
+
1676
+ const float d = bq5_K->d;
1677
+ const float dmin = bq5_K->dmin;
1678
+
1679
+ const int vl1 = ql[0];
1680
+ const int vl2 = ql[4];
1681
+
1682
+ const int vh1 = qh[0] >> bq8_offset;
1683
+ const int vh2 = qh[4] >> bq8_offset;
1684
+
1685
+ const uint16_t * scales = (const uint16_t *)bq5_K->scales;
1686
+ uint16_t aux[2];
1687
+ const int j = bq8_offset/2;
1688
+ if (j < 2) {
1689
+ aux[0] = scales[j+0] & 0x3f3f;
1690
+ aux[1] = scales[j+2] & 0x3f3f;
1691
+ } else {
1692
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
1693
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
1694
+ }
1695
+ const uint8_t * sc = (const uint8_t *)aux;
1696
+ const uint8_t * m = sc + 2;
1697
+
1698
+ for (int i = 0; i < QR5_K; ++i) {
1699
+
1700
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
1701
+ const float d8i = bq8i->d;
1702
+ const int * q8 = (const int *)bq8i->qs + (iqs%4);
1703
+ const int ui1 = q8[0];
1704
+ const int ui2 = q8[4];
1705
+
1706
+ const int vil1 = (vl1 >> (4*i)) & 0x0F0F0F0F;
1707
+ const int vil2 = (vl2 >> (4*i)) & 0x0F0F0F0F;
1708
+
1709
+ const int vih1 = ((vh1 >> i) << 4) & 0x10101010;
1710
+ const int vih2 = ((vh2 >> i) << 4) & 0x10101010;
1711
+
1712
+ const int vi1 = vil1 | vih1;
1713
+ const int vi2 = vil2 | vih2;
1714
+
1715
+ const int dot1 = __dp4a(vi2, ui2, __dp4a(vi1, ui1, 0)); // SIMD dot product
1716
+ const int dot2 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
1717
+
1718
+ sumf_d += d8i * (dot1 * sc[i]);
1719
+ sumf_m += d8i * (dot2 * m[i]);
1720
+
1721
+ }
1722
+
1723
+ return d*sumf_d - dmin*sumf_m;
1724
+
1725
+ #else
1726
+
1727
+ const int8_t * s = bq5_K->scales;
1728
+
1729
+ const float d = bq5_K->d;
1730
+
1731
+ const float d8_1 = bq8_1[0].d;
1732
+ const float d8_2 = bq8_1[1].d;
1733
+
1734
+ const int ui1 = *((const int *)bq8_1[0].qs + iqs);
1735
+ const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4);
1736
+ const int ui3 = *((const int *)bq8_1[1].qs + iqs);
1737
+ const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4);
1738
+
1739
+ const int * ql = (const int *)bq5_K->qs + iqs;
1740
+ const int vl1 = ql[0];
1741
+ const int vl2 = ql[4];
1742
+
1743
+ const int step = 4 * iqs; // 0, 4, 8, 12
1744
+ const int im = step/8; // = 0 for iqs = 0, 1, = 1 for iqs = 2, 3
1745
+ const int in = step%8; // 0, 4, 0, 4
1746
+ const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
1747
+
1748
+ const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
1749
+ const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
1750
+ const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
1751
+ const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
1752
+
1753
+ const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
1754
+ + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
1755
+
1756
+ return d * sumf_d;
1757
+
1758
+ #endif
1759
+
1760
+ #else
1761
+ return 0.0f; // only to satisfy the compiler
1762
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1763
+ }
1764
+
1765
+ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
1766
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
1767
+
1768
+ #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
1769
+ const block_q6_K * bq6_K = (const block_q6_K *) vbq;
1770
+
1771
+ const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
1772
+ const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
1773
+ const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
1774
+
1775
+ float sumf = 0.0f;
1776
+
1777
+ const float d = bq6_K->d;
1778
+
1779
+ int vl;
1780
+ memcpy(&vl, &bq6_K->ql[sizeof(int) * iqs], sizeof(int));
1781
+
1782
+ int vh;
1783
+ memcpy(&vh, &bq6_K->qh[sizeof(int) * ((QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4))], sizeof(int));
1784
+
1785
+ for (int i = 0; i < QR6_K; ++i) {
1786
+ const int sc = bq6_K->scales[scale_offset + 4*i];
1787
+
1788
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + 2*i;
1789
+ const int ui = *((int*) &bq8i->qs[sizeof(int) * (iqs % (QI8_1))]);
1790
+ const float d8i = bq8i->d;
1791
+
1792
+ const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
1793
+
1794
+ const int vih = ((vh >> (vh_shift + 4*i)) << 4) & 0x30303030;
1795
+
1796
+ const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
1797
+
1798
+ sumf += d8i * (__dp4a(vi, ui, 0) * sc); // SIMD dot product
1799
+ }
1800
+
1801
+ return d*sumf;
1802
+ #else
1803
+ return 0.0f; // only to satisfy the compiler
1804
+ #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
1805
  }
1806
 
1807
  template <int qk, int qi, typename block_q_t, vec_dot_q_cuda_t vec_dot_q_cuda>
 
1824
  for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
1825
  const int ibx = row*blocks_per_row + i + threadIdx.x / qi; // x block index
1826
 
1827
+ const int iby = (i + threadIdx.x / qi) * qk/QK8_1; // y block index that aligns with ibx
1828
 
1829
  const int iqs = threadIdx.x % qi; // x block quant index when casting the quants to int
1830
 
 
1910
  }
1911
  }
1912
 
1913
+ static __global__ void mul_mat_p021_f16_f32(
1914
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
1915
+ const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
1916
+
1917
  const half * x = (const half *) vx;
1918
 
1919
  const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
1920
  const int channel = blockDim.z*blockIdx.z + threadIdx.z;
1921
+ const int channel_x = channel / (nchannels_y / nchannels_x);
1922
 
1923
  const int nrows_y = ncols_x;
1924
  const int nrows_dst = nrows_x;
 
1934
  }
1935
 
1936
  // x is transposed and permuted
1937
+ const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
1938
  const float xi = __half2float(x[ix]);
1939
 
1940
  const int row_y = col_x;
 
1962
 
1963
  static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
1964
  const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
1965
+ const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
1966
 
1967
  const half * x = (const half *) vx;
1968
 
1969
  const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
1970
  const int channel = blockDim.z*blockIdx.z + threadIdx.z;
1971
+ const int channel_x = channel / channel_x_divisor;
1972
 
1973
  const int nrows_y = ncols_x;
1974
  const int nrows_dst = nrows_x;
 
1985
  break;
1986
  }
1987
 
1988
+ const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
1989
  const float xi = __half2float(x[ix]);
1990
 
1991
  const int row_y = col_x;
 
2067
  dst[i + 1] = x0*sin_theta + x1*cos_theta;
2068
  }
2069
 
2070
+ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
2071
+ const int col = blockDim.x*blockIdx.x + threadIdx.x;
2072
+ const int half_n_dims = ncols/4;
2073
+
2074
+ if (col >= half_n_dims) {
2075
+ return;
2076
+ }
2077
+
2078
+ const int row = blockDim.y*blockIdx.y + threadIdx.y;
2079
+ const int i = row*ncols + col;
2080
+
2081
+ const float col_theta_scale = powf(theta_scale, col);
2082
+
2083
+ const float theta = p*col_theta_scale;
2084
+ const float sin_theta = sinf(theta);
2085
+ const float cos_theta = cosf(theta);
2086
+
2087
+ const float x0 = x[i + 0];
2088
+ const float x1 = x[i + half_n_dims];
2089
+
2090
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
2091
+ dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
2092
+
2093
+ const float block_theta = block_p*col_theta_scale;
2094
+ const float sin_block_theta = sinf(block_theta);
2095
+ const float cos_block_theta = cosf(block_theta);
2096
+
2097
+ const float x2 = x[i + half_n_dims * 2];
2098
+ const float x3 = x[i + half_n_dims * 3];
2099
+
2100
+ dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
2101
+ dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
2102
+ }
2103
+
2104
  static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
2105
  const int col = blockDim.x*blockIdx.x + threadIdx.x;
2106
  const int row = blockDim.y*blockIdx.y + threadIdx.y;
 
2166
  dst[i] = scale * x[i];
2167
  }
2168
 
2169
+ static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
2170
+ const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
2171
+ add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
2172
  }
2173
 
2174
  static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
 
2181
  mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
2182
  }
2183
 
2184
+ static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
2185
+ const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
2186
+ gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
2187
+ }
2188
+
2189
  static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
2190
  const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
2191
  silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
2192
  }
2193
 
2194
+ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2195
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
2196
+ const dim3 block_dims(WARP_SIZE, 1, 1);
2197
+ norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
2198
+ }
2199
+
2200
+ static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
2201
  GGML_ASSERT(ncols % WARP_SIZE == 0);
2202
  const dim3 block_dims(WARP_SIZE, 1, 1);
2203
+ rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
2204
  }
2205
 
2206
  static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
 
2362
  }
2363
 
2364
  static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2365
+ GGML_ASSERT(ncols % QK4_0 == 0);
2366
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2367
  const dim3 block_nums(1, block_num_y, 1);
2368
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 
2371
  }
2372
 
2373
  static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2374
+ GGML_ASSERT(ncols % QK4_1 == 0);
2375
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2376
  const dim3 block_nums(1, block_num_y, 1);
2377
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 
2380
  }
2381
 
2382
  static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2383
+ GGML_ASSERT(ncols % QK5_0 == 0);
2384
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2385
  const dim3 block_nums(1, block_num_y, 1);
2386
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 
2389
  }
2390
 
2391
  static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2392
+ GGML_ASSERT(ncols % QK5_1 == 0);
2393
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2394
  const dim3 block_nums(1, block_num_y, 1);
2395
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 
2398
  }
2399
 
2400
  static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2401
+ GGML_ASSERT(ncols % QK8_0 == 0);
2402
  const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2403
  const dim3 block_nums(1, block_num_y, 1);
2404
  const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 
2406
  <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
2407
  }
2408
 
2409
+ static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2410
+ GGML_ASSERT(ncols % QK_K == 0);
2411
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2412
+ const dim3 block_nums(1, block_num_y, 1);
2413
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
2414
+ mul_mat_vec_q<QK_K, QI2_K, block_q2_K, vec_dot_q2_K_q8_1>
2415
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
2416
+ }
2417
+
2418
+ static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2419
+ GGML_ASSERT(ncols % QK_K == 0);
2420
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2421
+ const dim3 block_nums(1, block_num_y, 1);
2422
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
2423
+ mul_mat_vec_q<QK_K, QI3_K, block_q3_K, vec_dot_q3_K_q8_1>
2424
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
2425
+ }
2426
+
2427
+ static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2428
+ GGML_ASSERT(ncols % QK_K == 0);
2429
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2430
+ const dim3 block_nums(1, block_num_y, 1);
2431
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
2432
+ // Note: we use QI4_K/2 instead of QI4_K to make the dot product template require 4 groups of quants to be processed per
2433
+ // kernel call instead of 2. This results in a better perfmance because the cost of computing the k-quant scales
2434
+ // is better amortized.
2435
+ mul_mat_vec_q<QK_K, QI4_K/2, block_q4_K, vec_dot_q4_K_q8_1>
2436
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
2437
+ }
2438
+
2439
+ static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2440
+ GGML_ASSERT(ncols % QK_K == 0);
2441
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2442
+ const dim3 block_nums(1, block_num_y, 1);
2443
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
2444
+ // Note: we use QI5_K/2 instead of QI5_K to make the dot product template require 4 groups of quants to be processed per
2445
+ // kernel call instead of 2. This results in a better perfmance because the cost of computing the k-quant scales
2446
+ // is better amortized.
2447
+ mul_mat_vec_q<QK_K, QI5_K/2, block_q5_K, vec_dot_q5_K_q8_1>
2448
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
2449
+ }
2450
+
2451
+ static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
2452
+ GGML_ASSERT(ncols % QK_K == 0);
2453
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
2454
+ const dim3 block_nums(1, block_num_y, 1);
2455
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
2456
+ mul_mat_vec_q<QK_K, QI6_K, block_q6_K, vec_dot_q6_K_q8_1>
2457
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
2458
+ }
2459
+
2460
  static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
2461
  const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
2462
  dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 
2500
  }
2501
  }
2502
 
2503
+ static void ggml_mul_mat_p021_f16_f32_cuda(
2504
+ const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
2505
+ const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
2506
+
2507
+ const dim3 block_nums(1, nrows_x, nchannels_y);
2508
  const dim3 block_dims(WARP_SIZE, 1, 1);
2509
+ mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
2510
  }
2511
 
2512
  static void ggml_mul_mat_vec_nc_f16_f32_cuda(
2513
  const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
2514
+ const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
2515
 
2516
+ const dim3 block_nums(1, nrows_x, nchannels_y);
2517
  const dim3 block_dims(WARP_SIZE, 1, 1);
2518
  mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
2519
+ (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
2520
  }
2521
 
2522
  static void ggml_cpy_f32_f32_cuda(
 
2552
  rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
2553
  }
2554
 
2555
+ static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
2556
+ GGML_ASSERT(nrows % 4 == 0);
2557
+ const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
2558
+ const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
2559
+ const dim3 block_nums(num_blocks_x, nrows, 1);
2560
+ rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
2561
+ }
2562
+
2563
  static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
2564
  const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
2565
  const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
 
2668
 
2669
  static int g_device_count = -1;
2670
  static int g_main_device = 0;
2671
+ #ifndef GGML_CUDA_FORCE_DMMV
2672
  static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
2673
+ #endif
2674
  static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
2675
 
2676
  static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
 
2693
  g_tensor_split[id] = total_vram;
2694
  total_vram += prop.totalGlobalMem;
2695
 
2696
+ #ifndef GGML_CUDA_FORCE_DMMV
2697
  g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
2698
+ #endif
2699
  }
2700
  for (int id = 0; id < g_device_count; ++id) {
2701
  g_tensor_split[id] /= total_vram;
 
2720
  }
2721
 
2722
  void ggml_cuda_set_tensor_split(const float * tensor_split) {
2723
+ if (tensor_split == nullptr) {
2724
+ return;
2725
+ }
2726
  bool all_zero = true;
2727
  for (int i = 0; i < g_device_count; ++i) {
2728
  if (tensor_split[i] != 0.0f) {
 
2819
 
2820
  GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
2821
  GGML_ASSERT(src1_ddf_i != nullptr);
2822
+ GGML_ASSERT(dst_ddf_i != nullptr);
2823
 
2824
+ const int64_t ne00 = src0->ne[0];
2825
  const int64_t i01_diff = i01_high - i01_low;
2826
 
2827
+ const int64_t ne10 = src1->ne[0];
2828
+ const int64_t ne11 = src1->ne[1];
2829
+
2830
  // compute
2831
  if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
2832
+ add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
2833
  } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
2834
+ add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne00*i01_diff, cudaStream_main);
2835
  } else {
2836
  GGML_ASSERT(false);
2837
  }
 
2850
 
2851
  GGML_ASSERT(src0_ddf_i != nullptr);
2852
  GGML_ASSERT(src1_ddf_i != nullptr);
2853
+ GGML_ASSERT(dst_ddf_i != nullptr);
2854
 
2855
  const int64_t ne00 = src0->ne[0];
2856
+ const int64_t i01_diff = i01_high - i01_low;
2857
 
2858
  const int64_t ne10 = src1->ne[0];
2859
  const int64_t ne11 = src1->ne[1];
2860
 
2861
+ mul_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
 
2862
 
2863
+ (void) dst;
2864
+ (void) src0_ddq_i;
2865
+ (void) i02;
2866
+ (void) i1;
2867
+ }
2868
 
2869
+ inline void ggml_cuda_op_gelu(
2870
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
2871
+ float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
2872
+ cudaStream_t & cudaStream_main){
2873
+
2874
+ GGML_ASSERT(src0_ddf_i != nullptr);
2875
+ GGML_ASSERT(dst_ddf_i != nullptr);
2876
+
2877
+ const int64_t ne00 = src0->ne[0];
2878
+ const int64_t i01_diff = i01_high - i01_low;
2879
 
2880
+ // compute
2881
+ gelu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
2882
+
2883
+ (void) src1;
2884
  (void) dst;
2885
  (void) src0_ddq_i;
2886
+ (void) src1_ddf_i;
2887
  (void) i02;
2888
+ (void) i1;
2889
  }
2890
 
2891
  inline void ggml_cuda_op_silu(
 
2910
  (void) i1;
2911
  }
2912
 
2913
+ inline void ggml_cuda_op_norm(
2914
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
2915
+ float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
2916
+ cudaStream_t & cudaStream_main){
2917
+
2918
+ GGML_ASSERT(src0_ddf_i != nullptr);
2919
+ GGML_ASSERT(dst_ddf_i != nullptr);
2920
+
2921
+ const int64_t ne00 = src0->ne[0];
2922
+ const int64_t i01_diff = i01_high - i01_low;
2923
+
2924
+ // compute
2925
+ norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
2926
+
2927
+ (void) src1;
2928
+ (void) dst;
2929
+ (void) src0_ddq_i;
2930
+ (void) src1_ddf_i;
2931
+ (void) i02;
2932
+ (void) i1;
2933
+ }
2934
+
2935
  inline void ggml_cuda_op_rms_norm(
2936
  const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
2937
  float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
 
2943
  const int64_t ne00 = src0->ne[0];
2944
  const int64_t i01_diff = i01_high - i01_low;
2945
 
2946
+ float eps;
2947
+ memcpy(&eps, dst->op_params, sizeof(float));
2948
+
2949
  // compute
2950
+ rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
2951
 
2952
  (void) src1;
2953
  (void) dst;
 
2975
  int id;
2976
  CUDA_CHECK(cudaGetDevice(&id));
2977
 
2978
+ bool mul_mat_vec_q_implemented =
2979
+ src0->type == GGML_TYPE_Q4_0 ||
2980
  src0->type == GGML_TYPE_Q4_1 ||
2981
  src0->type == GGML_TYPE_Q5_0 ||
2982
  src0->type == GGML_TYPE_Q5_1 ||
2983
  src0->type == GGML_TYPE_Q8_0;
2984
+ #if QK_K == 256
2985
+ mul_mat_vec_q_implemented = mul_mat_vec_q_implemented ||
2986
+ src0->type == GGML_TYPE_Q2_K ||
2987
+ src0->type == GGML_TYPE_Q3_K ||
2988
+ src0->type == GGML_TYPE_Q4_K ||
2989
+ src0->type == GGML_TYPE_Q5_K ||
2990
+ src0->type == GGML_TYPE_Q6_K;
2991
+ #endif // QK_K == 256
2992
+
2993
+ const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= MIN_CC_DP4A && mul_mat_vec_q_implemented;
2994
  #endif
2995
 
2996
  if (use_mul_mat_vec_q) {
2997
+ const int64_t padded_row_size = ne00 % MATRIX_ROW_PADDING == 0 ?
2998
+ ne00 : ne00 - ne00 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
2999
  size_t as;
3000
  void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
3001
  quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main);
 
3016
  case GGML_TYPE_Q8_0:
3017
  mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
3018
  break;
3019
+ case GGML_TYPE_Q2_K:
3020
+ mul_mat_vec_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
3021
+ break;
3022
+ case GGML_TYPE_Q3_K:
3023
+ mul_mat_vec_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
3024
+ break;
3025
+ case GGML_TYPE_Q4_K:
3026
+ mul_mat_vec_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
3027
+ break;
3028
+ case GGML_TYPE_Q5_K:
3029
+ mul_mat_vec_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
3030
+ break;
3031
+ case GGML_TYPE_Q6_K:
3032
+ mul_mat_vec_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
3033
+ break;
3034
  default:
3035
  GGML_ASSERT(false);
3036
  break;
 
3162
  const int64_t ne00 = src0->ne[0];
3163
  const int64_t i01_diff = i01_high - i01_low;
3164
 
3165
+ const int n_past = ((int32_t *) dst->op_params)[0];
3166
+ const int n_dims = ((int32_t *) dst->op_params)[1];
3167
+ const int mode = ((int32_t *) dst->op_params)[2];
3168
+ const int n_ctx = ((int32_t *) dst->op_params)[3];
3169
+ // RoPE alteration for extended context
3170
 
3171
+ float freq_base, freq_scale;
3172
+ memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
3173
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
3174
 
3175
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
3176
+ const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
3177
+
3178
+ bool is_glm = mode & 4;
3179
 
3180
  // compute
3181
+ if (is_glm) {
3182
+ const float id_p = min(p, n_ctx - 2.f);
3183
+ const float block_p = max(p - (n_ctx - 2.f), 0.f);
3184
+ rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
3185
+ } else {
3186
+ rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
3187
+ }
3188
 
3189
+ (void) src1;
3190
  (void) dst;
3191
  (void) src0_ddq_i;
3192
  (void) src1_ddf_i;
 
3205
  const int64_t ne01 = src0->ne[1];
3206
  const int64_t i01_diff = i01_high - i01_low;
3207
 
3208
+ const int n_past = ((int32_t *) dst->op_params)[0];
3209
 
3210
  // compute
3211
  diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
3212
 
3213
+ (void) src1;
3214
  (void) dst;
3215
  (void) src0_ddq_i;
3216
  (void) src1_ddf_i;
 
3278
  const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
3279
  const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
3280
  const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
3281
+ const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
3282
+
3283
+ GGML_ASSERT(ne03 == ne13);
3284
 
3285
  const int64_t ne0 = dst->ne[0];
3286
  const int64_t ne1 = dst->ne[1];
 
3292
  GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
3293
 
3294
  // strides for iteration over dims 3 and 2
3295
+ const int64_t num_iters_0 = ne02 >= ne12 ? ne02*ne03 : ne12*ne13;
3296
+ const int64_t num_iters = flatten_rows ? 1 : num_iters_0;
3297
+ const int64_t stride_mod = flatten_rows ? num_iters_0 : 1;
3298
  const int64_t src0_stride = ne00 * ne01 * stride_mod;
3299
  const int64_t src1_stride = ne10 * ne11 * stride_mod;
3300
  const int64_t dst_stride = ne0 * ne1 * stride_mod;
3301
 
3302
+ const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
3303
+ const int64_t i03_max = flatten_rows ? 1 : ne03;
3304
+ const int64_t i02_max = flatten_rows ? 1 : (ne02 >= ne12 ? ne02 : ne12);
3305
+ const int64_t i02_divisor = ne02 >= ne12 ? 1 : ne12 / ne02;
3306
+ GGML_ASSERT(!(flatten_rows && ne02 < ne12));
3307
+
3308
  const size_t src0_ts = ggml_type_size(src0->type);
3309
  const size_t src0_bs = ggml_blck_size(src0->type);
3310
 
 
3321
  dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
3322
 
3323
  const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
3324
+ GGML_ASSERT(!(split && ne02 < ne12));
3325
 
3326
  const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
3327
 
 
3358
  row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
3359
  } else {
3360
  row_low = 0;
3361
+ row_high = nrows0*i02_divisor;
3362
  }
3363
  if (row_low == row_high) {
3364
  continue;
 
3406
  dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
3407
  }
3408
 
 
 
 
 
3409
  for (int64_t i03 = 0; i03 < i03_max; i03++) {
3410
  const int64_t i13 = i03 % ne13;
3411
  for (int64_t i02 = 0; i02 < i02_max; i02++) {
3412
  const int64_t i12 = i02 % ne12;
3413
 
3414
+ const int64_t i0 = i03*i02_max + i02;
3415
 
3416
  // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
3417
  const int64_t i0_offset_low = row_low/rows_per_iter;
 
3445
  const int64_t i11 = i13*ne12 + i12;
3446
 
3447
  // for split tensors the data begins at i0 == i0_offset_low
3448
+ char * src0_ddq_i = src0_ddq[id] + (i0/i02_divisor - i0_offset_low)*src0_stride*src0_ts/src0_bs;
3449
+ float * src0_ddf_i = src0_ddf[id] + (i0/i02_divisor - i0_offset_low)*src0_stride;
3450
  float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
3451
+ float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
3452
 
3453
  // for split tensors the data pointer needs to be rounded down
3454
  // to the bin edge for i03, i02 bins beyond the first
 
3487
  }
3488
  }
3489
 
3490
+ if ((!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
3491
  if (src0_is_f32) {
3492
+ CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
3493
  } else {
3494
+ CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
3495
  }
3496
  }
3497
 
 
3596
  ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
3597
  }
3598
 
3599
+ void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3600
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
3601
+ ggml_cuda_op(src0, src1, dst, ggml_cuda_op_gelu, true, true);
3602
+ }
3603
+
3604
  void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3605
  GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
3606
  ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
3607
  }
3608
 
3609
+ void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3610
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
3611
+ ggml_cuda_op(src0, src1, dst, ggml_cuda_op_norm, true, true);
3612
+ }
3613
+
3614
  void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3615
  GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
3616
  ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
 
3645
  const int64_t ne01 = src0->ne[1];
3646
  const int64_t ne02 = src0->ne[2];
3647
 
3648
+ const int64_t ne12 = src1->ne[2];
3649
+
3650
  CUDA_CHECK(cudaSetDevice(g_main_device));
3651
  cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
3652
 
 
3659
  struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
3660
  float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
3661
 
3662
+ ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, cudaStream_main);
3663
  }
3664
 
3665
  void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
 
3673
  const int64_t ne01 = src0->ne[1];
3674
  const int64_t ne02 = src0->ne[2];
3675
 
3676
+ const int64_t ne12 = src1->ne[2];
3677
+
3678
  const int64_t nb01 = src0->nb[1];
3679
  const int64_t nb02 = src0->nb[2];
3680
 
 
3693
  const int row_stride_x = nb01 / sizeof(half);
3694
  const int channel_stride_x = nb02 / sizeof(half);
3695
 
3696
+ ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, cudaStream_main);
3697
  }
3698
 
3699
  void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 
3770
  (void) dst;
3771
  }
3772
 
3773
+ void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3774
+ ggml_cuda_cpy(src0, dst, nullptr);
3775
+ (void) src1;
3776
+ }
3777
+
3778
  void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3779
  GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
3780
  ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
 
3834
  size_t size = ggml_nbytes_split(tensor, nrows_split);
3835
  const size_t original_size = size;
3836
 
3837
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
3838
  if (ne0 % MATRIX_ROW_PADDING != 0) {
3839
  size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
3840
  * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
 
3850
  }
3851
 
3852
 
3853
+ CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
3854
 
3855
  extra->data_device[id] = buf;
3856
 
 
3884
  delete extra;
3885
  }
3886
 
3887
+ static struct ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
3888
+ static size_t g_temp_tensor_extra_index = 0;
3889
+
3890
+ static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
3891
+ if (g_temp_tensor_extras == nullptr) {
3892
+ g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES];
3893
+ }
3894
+
3895
+ size_t alloc_index = g_temp_tensor_extra_index;
3896
+ g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES;
3897
+ struct ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
3898
+ memset(extra, 0, sizeof(*extra));
3899
+
3900
+ return extra;
3901
+ }
3902
+
3903
  void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
3904
  if (scratch && g_scratch_size == 0) {
3905
  return;
 
3908
  // recursively assign CUDA buffers until a compute tensor is found
3909
  if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
3910
  const ggml_op src0_op = tensor->src[0]->op;
3911
+ if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
3912
  ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
3913
  }
3914
  }
 
3917
  }
3918
 
3919
  tensor->backend = GGML_BACKEND_GPU;
3920
+ struct ggml_tensor_extra_gpu * extra;
 
3921
 
3922
  const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
3923
  tensor->op == GGML_OP_VIEW ||
 
3930
  char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
3931
  size_t offset = 0;
3932
  if (tensor->op == GGML_OP_VIEW) {
3933
+ memcpy(&offset, tensor->op_params, sizeof(size_t));
3934
  }
3935
+ extra = ggml_cuda_alloc_temp_tensor_extra();
3936
  extra->data_device[g_main_device] = src0_ddc + offset;
3937
  } else if (tensor->op == GGML_OP_CPY) {
3938
  struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
3939
  void * src1_ddv = src1_extra->data_device[g_main_device];
3940
+ extra = ggml_cuda_alloc_temp_tensor_extra();
3941
  extra->data_device[g_main_device] = src1_ddv;
3942
  } else if (scratch) {
3943
  GGML_ASSERT(size <= g_scratch_size);
 
3950
  CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
3951
  g_scratch_buffer = data;
3952
  }
3953
+ extra = ggml_cuda_alloc_temp_tensor_extra();
3954
  extra->data_device[g_main_device] = data + g_scratch_offset;
3955
 
3956
  g_scratch_offset += size;
 
3960
  void * data;
3961
  CUDA_CHECK(cudaMalloc(&data, size));
3962
  CUDA_CHECK(cudaMemset(data, 0, size));
3963
+ extra = new ggml_tensor_extra_gpu;
3964
+ memset(extra, 0, sizeof(*extra));
3965
  extra->data_device[g_main_device] = data;
3966
  }
3967
 
 
4014
  || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
4015
 
4016
  switch (tensor->op) {
4017
+ case GGML_OP_DUP:
4018
+ if (!any_on_device) {
4019
+ return false;
4020
+ }
4021
+ func = ggml_cuda_dup;
4022
+ break;
4023
  case GGML_OP_ADD:
4024
  if (!any_on_device) {
4025
  return false;
 
4032
  }
4033
  func = ggml_cuda_mul;
4034
  break;
4035
+ case GGML_OP_UNARY:
4036
+ switch (ggml_get_unary_op(tensor)) {
4037
+ case GGML_UNARY_OP_GELU:
4038
+ if (!any_on_device) {
4039
+ return false;
4040
+ }
4041
+ func = ggml_cuda_gelu;
4042
+ break;
4043
+ case GGML_UNARY_OP_SILU:
4044
+ if (!any_on_device) {
4045
+ return false;
4046
+ }
4047
+ func = ggml_cuda_silu;
4048
+ break;
4049
+ default:
4050
+ return false;
4051
+ } break;
4052
+ case GGML_OP_NORM:
4053
  if (!any_on_device) {
4054
  return false;
4055
  }
4056
+ func = ggml_cuda_norm;
4057
  break;
4058
  case GGML_OP_RMS_NORM:
4059
  if (!any_on_device) {
 
4079
  }
4080
  func = ggml_cuda_cpy;
4081
  break;
4082
+ case GGML_OP_CONT:
4083
+ if (!any_on_device) {
4084
+ return false;
4085
+ }
4086
+ func = ggml_cuda_dup;
4087
+ break;
4088
  case GGML_OP_RESHAPE:
4089
  case GGML_OP_VIEW:
4090
  case GGML_OP_PERMUTE:
ggml-metal.h CHANGED
@@ -61,6 +61,13 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
61
  // get data from the device into host memory
62
  void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
63
 
 
 
 
 
 
 
 
64
  // same as ggml_graph_compute but uses Metal
65
  // creates gf->n_threads command buffers in parallel
66
  void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
 
61
  // get data from the device into host memory
62
  void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
63
 
64
+ // try to find operations that can be run concurrently in the graph
65
+ // you should run it again if the topology of your graph changes
66
+ void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
67
+
68
+ // if the graph has been optimized for concurrently dispatch
69
+ bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
70
+
71
  // same as ggml_graph_compute but uses Metal
72
  // creates gf->n_threads command buffers in parallel
73
  void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);