#include "ggml.h" #include "otherarch.h" #include "utils.h" #include #include #include #include #include #include #include #include #include #include #include "model_adapter.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #endif #if defined(GGML_USE_CLBLAST) #include "ggml-opencl.h" #endif // load the model's weights from a file ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, gpt_vocab & vocab, int gpulayers) { printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return ModelLoadResult::FAIL; } // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return ModelLoadResult::FAIL; } } int32_t origmaxctx = model.hparams.n_ctx; // load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot)); fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_ctx = %d (%d)\n", __func__, hparams.n_ctx,origmaxctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: n_rot = %d\n", __func__, hparams.n_rot); printf("%s: ftype = %d\n", __func__, hparams.ftype); printf("%s: qntvr = %d\n", __func__, qntvr); hparams.ftype %= GGML_QNT_VERSION_FACTOR; } // load vocab { int32_t n_vocab = 0; fin.read((char *) &n_vocab, sizeof(n_vocab)); if (n_vocab != model.hparams.n_vocab) { fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); return ModelLoadResult::FAIL; } std::string word; std::vector buf(128); for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); buf.resize(len); fin.read((char *) buf.data(), len); word.assign(buf.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); if (wtype == GGML_TYPE_COUNT) { fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), model.hparams.ftype); return ModelLoadResult::FAIL; } auto & ctx = model.ctx; auto memory_type = GGML_TYPE_F16; size_t ctx_size = 0; { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_q_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_k_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_v_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b ctx_size += std::max(origmaxctx,n_ctx)*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k ctx_size += std::max(origmaxctx,n_ctx)*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v ctx_size += (5 + 10*n_layer)*512; // object overhead printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); } // create the ggml context { struct ggml_init_params params; params.mem_size = ctx_size; params.mem_buffer = NULL; params.no_alloc = false; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return ModelLoadResult::FAIL; } } // prepare memory for the weights { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_vocab = hparams.n_vocab; model.layers.resize(n_layer); model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab); // map by name model.tensors["transformer.wte.weight"] = model.wte; model.tensors["transformer.ln_f.weight"] = model.ln_f_g; model.tensors["transformer.ln_f.bias"] = model.ln_f_b; model.tensors["lm_head.weight"] = model.lmh_g; model.tensors["lm_head.bias"] = model.lmh_b; for (int i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_attn_q_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_k_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_v_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // map by name model.tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g; model.tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b; model.tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b; } } // key + value memory { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_mem = n_layer*std::max(origmaxctx,n_ctx); const int n_elements = n_embd*n_mem; model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements); const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); } // load weights { int n_tensors = 0; size_t total_size = 0; printf("%s: ", __func__); while (true) { int32_t n_dims; int32_t length; int32_t ttype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ttype), sizeof(ttype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return ModelLoadResult::FAIL; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return ModelLoadResult::FAIL; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { //test for transposition and retry older loader if(tensor->ne[0]==ne[1] && tensor->ne[1]==ne[0] && should_transpose_layer(name)) { printf("\nFound a transposed tensor. This could be an older or newer model. Retrying load..."); ggml_free(ctx); return ModelLoadResult::RETRY_LOAD; } else { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]); return ModelLoadResult::FAIL; } } // for debugging if (0) { printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); } const size_t bpe = ggml_type_size(ggml_type(ttype)); if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return ModelLoadResult::FAIL; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ttype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); total_size += ggml_nbytes(tensor); if (++n_tensors % 8 == 0) { printf("."); fflush(stdout); } } printf(" done\n"); printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors); } fin.close(); //gpu offload #if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS) if(gpulayers>0) { const auto & hparams = model.hparams; size_t vram_total = 0; const int n_gpu = std::min(gpulayers, int(hparams.n_layer)); fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu); for (int i = 0; i < n_gpu; ++i) { const auto & layer = model.layers[i]; layer.c_attn_q_proj_w->backend = GGML_BACKEND_GPU; layer.c_attn_k_proj_w->backend = GGML_BACKEND_GPU; layer.c_attn_v_proj_w->backend = GGML_BACKEND_GPU; layer.c_attn_proj_w->backend = GGML_BACKEND_GPU; layer.c_mlp_fc_w->backend = GGML_BACKEND_GPU; layer.c_mlp_proj_w->backend = GGML_BACKEND_GPU; #if defined(GGML_USE_CLBLAST) ggml_cl_transform_tensor(layer.c_attn_q_proj_w->data,layer.c_attn_q_proj_w); vram_total += ggml_nbytes(layer.c_attn_q_proj_w); ggml_cl_transform_tensor(layer.c_attn_k_proj_w->data,layer.c_attn_k_proj_w); vram_total += ggml_nbytes(layer.c_attn_k_proj_w); ggml_cl_transform_tensor(layer.c_attn_v_proj_w->data,layer.c_attn_v_proj_w); vram_total += ggml_nbytes(layer.c_attn_v_proj_w); ggml_cl_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w); ggml_cl_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w); ggml_cl_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w); #else ggml_cuda_transform_tensor(layer.c_attn_q_proj_w->data,layer.c_attn_q_proj_w); vram_total += ggml_nbytes(layer.c_attn_q_proj_w); ggml_cuda_transform_tensor(layer.c_attn_k_proj_w->data,layer.c_attn_k_proj_w); vram_total += ggml_nbytes(layer.c_attn_k_proj_w); ggml_cuda_transform_tensor(layer.c_attn_v_proj_w->data,layer.c_attn_v_proj_w); vram_total += ggml_nbytes(layer.c_attn_v_proj_w); ggml_cuda_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w); ggml_cuda_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w); ggml_cuda_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w); #endif } fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); } #endif return ModelLoadResult::SUCCESS; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // // The GPT-J model requires about 16MB of memory per input token. // bool gptj_eval( const gptj_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token, bool use_scratch) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_rot; static size_t buf_size = 256u*1024*1024; static void * buf = malloc(buf_size); // use 2 scratch buffers // TODO: very hacky solution - reimplement in a more elegant way static size_t scr0_size = 512u*1024*1024; static size_t scr1_size = 512u*1024*1024; static void * scr0 = malloc(scr0_size); static void * scr1 = malloc(scr1_size); if (mem_per_token > 0 && (mem_per_token*N*2 + 64u*1024*1024) > buf_size) { const size_t buf_size_new = 320u*1024*1024 + 1.2*(mem_per_token*N); // add 10% to account for ggml object overhead //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); // reallocate if (buf_size_new > buf_size) { buf_size = buf_size_new; buf = realloc(buf, buf_size); if (buf == nullptr) { fprintf(stderr, "%s: failed to allocate %zu bytes. Try reducing batch size.\n", __func__, buf_size); return false; } } } struct ggml_init_params params; params.mem_size = buf_size; params.mem_buffer = buf; params.no_alloc = false; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; gf.n_threads = n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); // wte struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; if(use_scratch){ ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); } // norm { cur = ggml_norm(ctx0, inpL); // cur = ln_1_g*cur + ln_1_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); } struct ggml_tensor * inpSA = cur; // self-attention { struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); // store key and value to memory { struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur)); struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd, ( n_ctx)*ggml_element_size(model.memory_v), (il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) ); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor * V = ggml_view_3d(ctx0, model.memory_v, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(model.memory_v), n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head, il*n_ctx*ggml_element_size(model.memory_v)*n_embd); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur); } if(use_scratch){ ggml_set_scratch(ctx0, { 0, scr1_size, scr1, }); } struct ggml_tensor * inpFF = cur; // feed-forward network // this is independent of the self-attention result, so it could be done in parallel to the self-attention { // note here we pass inpSA instead of cur cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_fc_w, inpSA); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), cur); // GELU activation cur = ggml_gelu(ctx0, cur); // projection // cur = proj_w*cur + proj_b cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_proj_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), cur); } // self-attention + FF cur = ggml_add(ctx0, cur, inpFF); // input for next layer inpL = ggml_add(ctx0, cur, inpL); } if(use_scratch){ ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); } // norm { inpL = ggml_norm(ctx0, inpL); // inpL = ln_f_g*inpL + ln_f_b inpL = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_g, inpL), inpL), ggml_repeat(ctx0, model.ln_f_b, inpL)); } if(use_scratch){ ggml_set_scratch(ctx0, { 0, 0, nullptr, }); } // lm_head { inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); inpL = ggml_add(ctx0, ggml_repeat(ctx0, model.lmh_b, inpL), inpL); } // logits -> probs //inpL = ggml_soft_max_inplace(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); ggml_graph_compute (ctx0, &gf); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-j.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; }