File size: 7,370 Bytes
4a27403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr

import copy
import random
import os
import requests
import time
import sys

from huggingface_hub import snapshot_download
from llama_cpp import Llama


SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
SYSTEM_TOKEN = 1788
USER_TOKEN = 1404
BOT_TOKEN = 9225
LINEBREAK_TOKEN = 13


def get_message_tokens(model, role, content):
    message_tokens = model.tokenize(content.encode("utf-8"))
    message_tokens.insert(1, ROLE_TOKENS[role])
    message_tokens.insert(2, LINEBREAK_TOKEN)
    message_tokens.append(model.token_eos())
    return message_tokens


def get_system_tokens(model):
    system_message = {"role": "system", "content": SYSTEM_PROMPT}
    return get_message_tokens(model, **system_message)


repo_name = "IlyaGusev/saiga2_13b_ggml"
model_name = "ggml-model-q4_1.bin"

snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)

model = Llama(
    model_path=model_name,
    n_ctx=2000,
    n_parts=1,
)

max_new_tokens = 1500

def user(message, history):
    new_history = history + [[message, None]]
    return "", new_history


def bot(
    history,
    system_prompt,
    top_p,
    top_k,
    temp
)
    tokens = get_system_tokens(model)[:]
    tokens.append(LINEBREAK_TOKEN)

    for user_message, bot_message in history[:-1]:
        message_tokens = get_message_tokens(model=model, role="user", content=user_message)
        tokens.extend(message_tokens)
        if bot_message:
            message_tokens = get_message_tokens(model=model, role="bot", content=bot_message)
            tokens.extend(message_tokens)

    last_user_message = history[-1][0]
    if retrieved_docs:
        last_user_message = f"Контекст: {retrieved_docs}\n\nИспользуя контекст, ответь на вопрос: {last_user_message}"
    message_tokens = get_message_tokens(model=model, role="user", content=last_user_message)
    tokens.extend(message_tokens)

    role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
    tokens.extend(role_tokens)
    generator = model.generate(
        tokens,
        top_k=top_k,
        top_p=top_p,
        temp=temp
    )

    partial_text = ""
    for i, token in enumerate(generator):
        if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens):
            break
        partial_text += model.detokenize([token]).decode("utf-8", "ignore")
        history[-1][1] = partial_text
        yield history


with gr.Blocks(
    theme=gr.themes.Soft()
) as demo:
    conversation_id = gr.State(get_uuid)
    favicon = '<img src="https://cdn.midjourney.com/b88e5beb-6324-4820-8504-a1a37a9ba36d/0_1.png" width="48px" style="display: inline">'
    gr.Markdown(
        f"""<h1><center>{favicon}Saiga2 13B</center></h1>
        
        This is a demo of a **Russian**-speaking LLaMA2-based model. If you are interested in other languages, please check other models, such as [MPT-7B-Chat](https://huggingface.co/spaces/mosaicml/mpt-7b-chat).
        
        Это демонстрационная версия версии [Сайги-2 с 13 миллиардами параметров](https://huggingface.co/IlyaGusev/saiga_13b_lora).
        
        Сайга — это разговорная языковая модель, которая основана на [LLaMA](https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/) и дообучена на корпусах, сгенерированных ChatGPT, таких как [ru_turbo_alpaca](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca), [ru_turbo_saiga](https://huggingface.co/datasets/IlyaGusev/ru_turbo_saiga) и [gpt_roleplay_realm](https://huggingface.co/datasets/IlyaGusev/gpt_roleplay_realm).
        """
    )
    with gr.Row():
        with gr.Column(scale=5):
            system_prompt = gr.Textbox(label="Системный промпт", placeholder="", value=SYSTEM_PROMPT, interactive=False)
            chatbot = gr.Chatbot(label="Диалог").style(height=400)
        with gr.Column(min_width=80, scale=1):
            with gr.Tab(label="Параметры генерации"):
                top_p = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.9,
                    step=0.05,
                    interactive=True,
                    label="Top-p",
                )
                top_k = gr.Slider(
                    minimum=10,
                    maximum=100,
                    value=30,
                    step=5,
                    interactive=True,
                    label="Top-k",
                )
                temp = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    value=0.1,
                    step=0.1,
                    interactive=True,
                    label="Temp"
                )
    with gr.Row():
        with gr.Column():
            msg = gr.Textbox(
                label="Отправить сообщение",
                placeholder="Отправить сообщение",
                show_label=False,
            ).style(container=False)
        with gr.Column():
            with gr.Row():
                submit = gr.Button("Отправить")
                stop = gr.Button("Остановить")
                clear = gr.Button("Очистить")
    with gr.Row():
        gr.Markdown(
            """ПРЕДУПРЕЖДЕНИЕ: Модель может генерировать фактически или этически некорректные тексты. Мы не несём за это ответственность."""
        )
                
    # Pressing Enter
    submit_event = msg.submit(
        fn=user,
        inputs=[msg, chatbot, system_prompt],
        outputs=[msg, chatbot],
        queue=False,
    ).success(
        fn=retrieve,
        inputs=[chatbot, db, retrieved_docs, k_documents],
        outputs=[retrieved_docs],
        queue=True,
    ).success(
        fn=bot,
        inputs=[
            chatbot,
            system_prompt,
            conversation_id,
            retrieved_docs,
            top_p,
            top_k,
            temp
        ],
        outputs=chatbot,
        queue=True,
    )

    # Pressing the button
    submit_click_event = submit.click(
        fn=user,
        inputs=[msg, chatbot, system_prompt],
        outputs=[msg, chatbot],
        queue=False,
    ).success(
        fn=retrieve,
        inputs=[chatbot, db, retrieved_docs, k_documents],
        outputs=[retrieved_docs],
        queue=True,
    ).success(
        fn=bot,
        inputs=[
            chatbot,
            system_prompt,
            conversation_id,
            retrieved_docs,
            top_p,
            top_k,
            temp
        ],
        outputs=chatbot,
        queue=True,
    )

    # Stop generation
    stop.click(
        fn=None,
        inputs=None,
        outputs=None,
        cancels=[submit_event, submit_click_event],
        queue=False,
    )

    # Clear history
    clear.click(lambda: None, None, chatbot, queue=False)

demo.queue(max_size=128, concurrency_count=1)
demo.launch()