File size: 6,761 Bytes
4a27403 a7c2e6e 4a27403 f1beb5e 4a27403 dc414f9 4a27403 dc414f9 4a27403 dc414f9 4a27403 d9f8d6b dc414f9 4a27403 949cae6 4a27403 dc414f9 4a27403 dbda578 f1beb5e 4a27403 f1beb5e 4a27403 1affa63 4a27403 1affa63 4a27403 f1beb5e 4a27403 d9f8d6b 4a27403 ddb02b4 4a27403 94867a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
import os
from huggingface_hub.file_download import http_get
from llama_cpp import Llama
SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
def get_message_tokens(model, role, content):
content = f"{role}\n{content}\n</s>"
content = content.encode("utf-8")
return model.tokenize(content, special=True)
def get_system_tokens(model):
system_message = {"role": "system", "content": SYSTEM_PROMPT}
return get_message_tokens(model, **system_message)
def load_model(
directory: str = ".",
model_name: str = "model-q4_K.gguf",
model_url: str = "https://huggingface.co/IlyaGusev/saiga2_13b_gguf/resolve/main/model-q4_K.gguf"
):
final_model_path = os.path.join(directory, model_name)
print("Downloading all files...")
if not os.path.exists(final_model_path):
with open(final_model_path, "wb") as f:
http_get(model_url, f)
os.chmod(final_model_path, 0o777)
print("Files downloaded!")
model = Llama(
model_path=final_model_path,
n_ctx=2048
)
print("Model loaded!")
return model
MODEL = load_model()
def user(message, history):
new_history = history + [[message, None]]
return "", new_history
def bot(
history,
system_prompt,
top_p,
top_k,
temp
):
model = MODEL
tokens = get_system_tokens(model)[:]
for user_message, bot_message in history[:-1]:
message_tokens = get_message_tokens(model=model, role="user", content=user_message)
tokens.extend(message_tokens)
if bot_message:
message_tokens = get_message_tokens(model=model, role="bot", content=bot_message)
tokens.extend(message_tokens)
last_user_message = history[-1][0]
message_tokens = get_message_tokens(model=model, role="user", content=last_user_message)
tokens.extend(message_tokens)
role_tokens = model.tokenize("bot\n".encode("utf-8"), special=True)
tokens.extend(role_tokens)
generator = model.generate(
tokens,
top_k=top_k,
top_p=top_p,
temp=temp
)
partial_text = ""
for i, token in enumerate(generator):
if token == model.token_eos():
break
partial_text += model.detokenize([token]).decode("utf-8", "ignore")
history[-1][1] = partial_text
yield history
with gr.Blocks(
theme=gr.themes.Soft()
) as demo:
favicon = '<img src="https://cdn.midjourney.com/b88e5beb-6324-4820-8504-a1a37a9ba36d/0_1.png" width="48px" style="display: inline">'
gr.Markdown(
f"""<h1><center>{favicon}Saiga2 13B GGUF Q4_K</center></h1>
This is a demo of a **Russian**-speaking LLaMA2-based model. If you are interested in other languages, please check other models, such as [MPT-7B-Chat](https://huggingface.co/spaces/mosaicml/mpt-7b-chat).
Это демонстрационная версия [квантованной Сайги-2 с 13 миллиардами параметров](https://huggingface.co/IlyaGusev/saiga2_13b_ggml), работающая на CPU.
Сайга-2 — это разговорная языковая модель, которая основана на [LLaMA-2](https://ai.meta.com/llama/) и дообучена на корпусах, сгенерированных ChatGPT, таких как [ru_turbo_alpaca](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca), [ru_turbo_saiga](https://huggingface.co/datasets/IlyaGusev/ru_turbo_saiga) и [gpt_roleplay_realm](https://huggingface.co/datasets/IlyaGusev/gpt_roleplay_realm).
"""
)
with gr.Row():
with gr.Column(scale=5):
system_prompt = gr.Textbox(label="Системный промпт", placeholder="", value=SYSTEM_PROMPT, interactive=False)
chatbot = gr.Chatbot(label="Диалог").style(height=400)
with gr.Column(min_width=80, scale=1):
with gr.Tab(label="Параметры генерации"):
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
interactive=True,
label="Top-p",
)
top_k = gr.Slider(
minimum=10,
maximum=100,
value=30,
step=5,
interactive=True,
label="Top-k",
)
temp = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.01,
step=0.01,
interactive=True,
label="Температура"
)
with gr.Row():
with gr.Column():
msg = gr.Textbox(
label="Отправить сообщение",
placeholder="Отправить сообщение",
show_label=False,
).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Отправить")
stop = gr.Button("Остановить")
clear = gr.Button("Очистить")
with gr.Row():
gr.Markdown(
"""ПРЕДУПРЕЖДЕНИЕ: Модель может генерировать фактически или этически некорректные тексты. Мы не несём за это ответственность."""
)
# Pressing Enter
submit_event = msg.submit(
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).success(
fn=bot,
inputs=[
chatbot,
system_prompt,
top_p,
top_k,
temp
],
outputs=chatbot,
queue=True,
)
# Pressing the button
submit_click_event = submit.click(
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).success(
fn=bot,
inputs=[
chatbot,
system_prompt,
top_p,
top_k,
temp
],
outputs=chatbot,
queue=True,
)
# Stop generation
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[submit_event, submit_click_event],
queue=False,
)
# Clear history
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue(max_size=128)
demo.launch(show_error=True)
|