import streamlit as st from transformers import AutoProcessor, SeamlessM4Tv2Model import torchaudio import soundfile as sf import torch import os language_map = { "Modern Standard Arabic": "arb", "Bengali": "ben", "Catalan": "cat", "Czech": "ces", "Mandarin Chinese": "cmn", "Welsh": "cym", "Danish": "dan", "German": "deu", "English": "eng", "Estonian": "est", "Finnish": "fin", "French": "fra", "Hindi": "hin", "Indonesian": "ind", "Italian": "ita", "Japanese": "jpn", "Kannada": "kan", "Korean": "kor", "Maltese": "mlt", "Dutch": "nld", "Western Persian": "pes", "Polish": "pol", "Portuguese": "por", "Romanian": "ron", "Russian": "rus", "Slovak": "slk", "Spanish": "spa", "Swedish": "swe", "Swahili": "swh", "Tamil": "tam", "Telugu": "tel", "Tagalog": "tgl", "Thai": "tha", "Turkish": "tur", "Ukrainian": "ukr", "Urdu": "urd", "Northern Uzbek": "uzn", "Vietnamese": "vie" } # Check if CUDA (GPU support) is available and set the device accordingly device = "cuda" if torch.cuda.is_available() else "cpu" # Function to load and cache the model and processor @st.cache_resource def load_model_and_processor(): processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") model.to(device) return processor, model processor, model = load_model_and_processor() # Streamlit app layout st.title("Sarvm Audio Search") # Sidebar components st.sidebar.header("Input Settings") input_text = st.sidebar.text_input("Enter text for conversion:", "Hello, my dog is cute") selected_language_name = st.sidebar.selectbox("Select Target Language:", list(language_map.keys())) selected_language_code = language_map[selected_language_name] # Function to convert text to audio and save def text_to_audio(text, language): text_inputs = processor(text=text, src_lang="eng", return_tensors="pt").to(device) audio_array = model.generate(**text_inputs, tgt_lang=language)[0].cpu().numpy().squeeze() file_path = 'audio_from_text.wav' sf.write(file_path, audio_array, 16000) return file_path # Function to convert audio to audio and save def audio_to_audio(input_audio_path, language): audio, orig_freq = torchaudio.load(input_audio_path) audio = torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=16000).to(device) audio_inputs = processor(audios=audio, return_tensors="pt").to(device) audio_array = model.generate(**audio_inputs, tgt_lang=language)[0].cpu().numpy().squeeze() file_path = 'audio_from_audio.wav' sf.write(file_path, audio_array, 16000) return file_path # UI to trigger text-to-audio conversion if st.sidebar.button("Convert Text to Audio"): with st.spinner("Converting..."): audio_path = text_to_audio(input_text, selected_language_code) st.audio(audio_path) # UI to upload audio file and trigger audio-to-audio conversion uploaded_audio = st.sidebar.file_uploader("Upload audio for conversion:", type=["wav"]) if uploaded_audio is not None and st.button("Convert Uploaded Audio"): with st.spinner("Converting..."): audio_file_path = f"temp_{uploaded_audio.name}" with open(audio_file_path, "wb") as f: f.write(uploaded_audio.getvalue()) converted_audio_path = audio_to_audio(audio_file_path, selected_language_code) st.audio(converted_audio_path) os.remove(audio_file_path)