File size: 9,176 Bytes
97ae727
 
fd50cbd
1f4b746
4b6a96c
1609dbf
fd50cbd
1609dbf
97ae727
1609dbf
fd50cbd
4b6a96c
 
 
 
 
 
fd50cbd
 
 
4b6a96c
fd50cbd
 
 
 
 
 
97ae727
1f4b746
fd50cbd
 
 
 
60beffb
1f4b746
fd50cbd
 
1f4b746
 
2931ce4
4b6a96c
 
97ae727
a99e2d3
fd50cbd
 
 
 
2931ce4
fd50cbd
4b6a96c
a99e2d3
2931ce4
fd50cbd
2931ce4
4b6a96c
 
fd50cbd
 
2931ce4
fed4ab4
fd50cbd
 
97ae727
fd50cbd
1f4b746
fd50cbd
1f4b746
fd50cbd
1f4b746
 
60beffb
1f4b746
2931ce4
fd50cbd
1f4b746
 
60beffb
4b6a96c
 
97ae727
60beffb
fd50cbd
2931ce4
fd50cbd
4b6a96c
fd50cbd
60beffb
 
 
 
 
fd50cbd
60beffb
4b6a96c
 
fd50cbd
2931ce4
4b6a96c
 
 
fd50cbd
 
97ae727
1f4b746
fd50cbd
2931ce4
1f4b746
4b6a96c
1f4b746
 
 
 
 
 
 
60beffb
4b6a96c
 
97ae727
 
1f4b746
fd50cbd
1f4b746
 
2931ce4
60beffb
1f4b746
 
60beffb
4b6a96c
 
1f4b746
fd50cbd
2931ce4
4b6a96c
fd50cbd
97ae727
 
 
1f4b746
fd50cbd
 
 
 
 
1f4b746
 
4b6a96c
fd50cbd
 
97ae727
fd50cbd
4b6a96c
 
60beffb
2931ce4
4b6a96c
 
 
fd50cbd
1f4b746
97ae727
 
1f4b746
fd50cbd
1f4b746
 
 
 
 
4b6a96c
1f4b746
fd50cbd
 
1f4b746
 
fd50cbd
4b6a96c
 
60beffb
2931ce4
4b6a96c
fd50cbd
 
 
 
 
 
 
 
 
97ae727
fd50cbd
4b6a96c
 
1609dbf
 
 
 
 
 
 
 
 
fd50cbd
1609dbf
fd50cbd
4b6a96c
1609dbf
4b6a96c
 
fd50cbd
 
 
 
 
 
 
 
1609dbf
 
 
4b6a96c
 
 
 
 
 
 
 
 
1609dbf
4b6a96c
 
1609dbf
 
 
 
 
 
 
4b6a96c
 
1609dbf
4b6a96c
 
 
 
 
 
1609dbf
 
4b6a96c
 
1609dbf
 
 
 
 
4b6a96c
 
1609dbf
 
 
 
 
4b6a96c
 
1609dbf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import pandas as pd

import streamlit as st
import altair as alt

from pygwalker.api.streamlit import StreamlitRenderer, init_streamlit_comm

from types import SimpleNamespace

from df import fetch

alt.renderers.set_embed_options(theme="dark")


@st.cache_data(ttl="30m")
def fetch_asset(asset):
    return fetch(asset)

def gen_charts(asset, chart_size={"width": 560, "height": 300}):
    # Gen data
    data = fetch_asset(asset)
    etf_volumes = data.etf_volumes
    price = data.price
    etf_flow_individual = data.etf_flow_individual
    etf_flow_total = data.etf_flow_total
    cum_flow_individual = data.cum_flow_individual
    cum_flow_total = data.cum_flow_total

    trading_vol_fig = (
        alt.Chart(etf_volumes)
        .transform_fold(
            etf_volumes.drop(columns="Date").columns.to_list(), as_=["Funds", "Volume"]
        )
        .mark_line()
        .encode(
            x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
            y=alt.Y("Volume:Q"),
            color="Funds:N",
        )
    ).properties(
        width=chart_size["width"],
        height=chart_size["height"] / 2,
    )
    trading_vol_total_fig = (
        alt.Chart(etf_volumes)
        .transform_fold(
            etf_volumes.drop(columns="Date").columns.to_list(), as_=["Funds", "Volume"]
        )
        .mark_rule()
        .encode(
            x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)),
            y=alt.Y("sum(Volume):Q", title="Total Volume"),
            color=alt.value("teal"),
        )
    ).properties(
        width=chart_size["width"],
        height=chart_size["height"] / 2,
    )
    # Combine trading volume and average trading volume
    trading_vol_fig = trading_vol_total_fig & trading_vol_fig
    trading_vol_fig = trading_vol_fig.properties(
        title=f"{asset} ETF trading volume",
    )

    # Net flow individual
    net_flow_individual_fig = (
        alt.Chart(etf_flow_individual)
        .transform_fold(
            etf_flow_individual.drop(columns="Date").columns.to_list(),
            as_=["Funds", "Net Flow"],
        )
        .mark_line()
        .encode(
            x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
            y=alt.Y("Net Flow:Q"),
            color="Funds:N",
        )
    ).properties(
        width=chart_size["width"],
        height=chart_size["height"] / 2,
    )
    net_flow_total_fig = (
        alt.Chart(etf_flow_total)
        .mark_rule()
        .encode(
            x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)),
            y=alt.Y("Total:Q"),
            color=alt.condition(
                alt.datum.Total > 0,
                alt.value("seagreen"),  # The positive color
                alt.value("orangered"),  # The negative color
            ),
        )
    ).properties(
        width=chart_size["width"],
        height=chart_size["height"] / 2,
    )
    net_flow_individual_fig = net_flow_total_fig & net_flow_individual_fig
    net_flow_individual_fig = net_flow_individual_fig.resolve_scale(
        x="shared"
    ).properties(
        title=f"{asset} ETF net flow of individual funds",
    )

    net_flow_total_fig = (
        alt.Chart(etf_flow_total)
        .mark_rule()
        .encode(
            x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)),
            y=alt.Y("Total:Q"),
            color=alt.condition(
                alt.datum.Total > 0,
                alt.value("seagreen"),  # The positive color
                alt.value("orangered"),  # The negative color
            ),
        )
    ).properties(
        width=chart_size["width"],
        height=chart_size["height"] / 2,
    )
    # Line chart of price
    price_fig = (
        alt.Chart(price)
        .mark_line()
        .encode(
            x=alt.X("Date:T", axis=alt.Axis(tickCount="day")),
            y=alt.Y("Price:Q").scale(zero=False),
            color=alt.value("crimson"),
        )
    ).properties(
        width=chart_size["width"],
        height=chart_size["height"] / 2,
    )

    net_flow_total_fig = net_flow_total_fig & price_fig
    net_flow_total_fig = net_flow_total_fig.resolve_scale(x="shared").properties(
        title=f"{asset} ETF net flow total vs asset price",
    )

    # Stacking area chart of flow from individual funds
    cum_flow_individual_net_fig = (
        alt.Chart(cum_flow_individual)
        .transform_fold(
            cum_flow_individual.drop(columns="Date").columns.to_list(),
            as_=["Funds", "Net Flow"],
        )
        .mark_area()
        .encode(
            x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)),
            y=alt.Y("Net Flow:Q"),
            color=alt.Color("Funds:N", scale=alt.Scale(scheme="tableau20")),
        )
    ).properties(
        width=chart_size["width"],
        height=chart_size["height"] / 2,
    )
    cum_flow_individual_net_fig = cum_flow_individual_net_fig & price_fig
    cum_flow_individual_net_fig = cum_flow_individual_net_fig.resolve_scale(
        x="shared"
    ).properties(
        title=f"{asset} ETF cumulative flow of individual funds vs asset price",
    )

    # Area chart for cumulative flow
    cum_flow_total_fig = (
        alt.Chart(cum_flow_total)
        .transform_calculate(
            negative="datum.Total < 0",
        )
        .mark_area()
        .encode(
            x=alt.X("Date:T", axis=alt.Axis(tickCount="day", title="", labels=False)),
            y=alt.Y("Total:Q", impute={"value": 0}),
            color=alt.Color(
                "negative:N", title="Negative Flow", scale=alt.Scale(scheme="set2")
            ),
        )
    ).properties(
        width=chart_size["width"],
        height=chart_size["height"] / 2,
    )
    cum_flow_total_fig = cum_flow_total_fig & price_fig
    cum_flow_total_fig = cum_flow_total_fig.resolve_scale(x="shared").properties(
        title=f"{asset} ETF cumulative flow total vs asset price",
    )

    return SimpleNamespace(
        trading_vol_fig=trading_vol_fig,
        net_flow_individual_fig=net_flow_individual_fig,
        net_flow_total_fig=net_flow_total_fig,
        cum_flow_individual_net_fig=cum_flow_individual_net_fig,
        cum_flow_total_fig=cum_flow_total_fig,
    )


def asset_charts(asset: str, chart_size={"width": "container", "height": 300}):
    charts = gen_charts(asset, chart_size)
    # Vertical concat the charts in each asset into single column of that asset
    all_charts = (
        charts.trading_vol_fig
        & charts.net_flow_individual_fig
        & charts.net_flow_total_fig
        & charts.cum_flow_individual_net_fig
        & charts.cum_flow_total_fig
    ).resolve_scale(color="independent")

    return all_charts


def compound_chart(chart_size={"width": 560, "height": 300}):
    all_charts_btc = asset_charts("BTC", chart_size)
    all_charts_eth = asset_charts("ETH", chart_size)
    # Horizontal concat the charts for btc and eth
    all_charts = (all_charts_btc | all_charts_eth).resolve_scale(color="independent")

    return all_charts

if __name__ == "__main__":
    # Set page config
    st.set_page_config(layout="wide", page_icon="📈")
    # Initialize pygwalker communication
    init_streamlit_comm()

    dashboard_tab, single_view, flow_tab, volume_tab, price_tab = st.tabs(
        [
            "Dashboard",
            "View Single ETF",
            "Explore ETF Flow",
            "Explore ETF Volume",
            "Explore ETF Asset Price",
        ]
    )

    btc = fetch_asset("BTC")
    eth = fetch_asset("ETH")

    with dashboard_tab:
        chart = compound_chart(chart_size={"width": 560, "height": 300})
        # Display charts
        st.altair_chart(chart, use_container_width=True)
    with single_view:
        asset = st.selectbox(
            "Asset to view",
            ("BTC", "ETH"),
        )
        charts = gen_charts(asset, chart_size={"width": "container", "height": 600})
        st.altair_chart(charts.trading_vol_fig, use_container_width=True)
        st.altair_chart(charts.net_flow_individual_fig, use_container_width=True)
        st.altair_chart(charts.net_flow_total_fig, use_container_width=True)
        st.altair_chart(charts.cum_flow_individual_net_fig, use_container_width=True)
        st.altair_chart(charts.cum_flow_total_fig, use_container_width=True)
    with flow_tab:
        btc_flow, eth_flow = btc.etf_flow, eth.etf_flow
        btc_flow["Asset"] = "BTC"
        eth_flow["Asset"] = "ETH"
        df = pd.concat([btc_flow, eth_flow])
        df.Date = df.Date.astype(str)
        StreamlitRenderer(df).explorer()
    with volume_tab:
        btc_volume, eth_volume = btc.etf_volumes, eth.etf_volumes
        btc_volume["Asset"] = "BTC"
        eth_volume["Asset"] = "ETH"
        df = pd.concat([btc_volume, eth_volume])
        df.Date = df.Date.astype(str)
        StreamlitRenderer(df).explorer()
    with price_tab:
        btc_price, eth_price = btc.price, eth.price
        btc_price["Asset"] = "BTC"
        eth_price["Asset"] = "ETH"
        df = pd.concat([btc_price, eth_price])
        df.Date = df.Date.astype(str)
        StreamlitRenderer(df).explorer()