File size: 9,750 Bytes
cf1b1b4
 
97ae727
 
fd50cbd
445d48c
1f4b746
4b6a96c
1609dbf
fd50cbd
1609dbf
97ae727
1609dbf
fd50cbd
4b6a96c
 
 
 
 
 
fd50cbd
cf1b1b4
37a1056
fd50cbd
4b6a96c
fd50cbd
 
 
 
 
 
97ae727
0fa6f3b
cf1b1b4
0fa6f3b
37a1056
 
cf1b1b4
 
 
 
 
 
 
 
 
445d48c
cf1b1b4
 
 
 
 
 
 
 
37a1056
 
 
cf1b1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ae727
37a1056
cf1b1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd50cbd
97ae727
fd50cbd
37a1056
cf1b1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ae727
37a1056
cf1b1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ae727
 
 
37a1056
cf1b1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f4b746
97ae727
 
37a1056
cf1b1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd50cbd
 
 
37a1056
 
 
 
 
 
 
97ae727
fd50cbd
cf1b1b4
37a1056
1609dbf
0fa6f3b
1609dbf
 
cf1b1b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a1056
fd50cbd
 
 
cf1b1b4
 
fd50cbd
 
1609dbf
 
 
4b6a96c
 
 
 
 
 
 
 
 
1609dbf
4b6a96c
 
1609dbf
 
cf1b1b4
 
 
 
 
 
1609dbf
37a1056
 
 
 
 
445d48c
37a1056
cf27d1b
 
445d48c
cf27d1b
 
445d48c
cf27d1b
1609dbf
 
4b6a96c
 
1609dbf
37a1056
 
445d48c
 
 
 
 
cf27d1b
1609dbf
 
4b6a96c
 
1609dbf
 
 
 
4b6a96c
 
1609dbf
 
 
 
4b6a96c
 
1609dbf
 
cf1b1b4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#!/usr/bin/env -S pkgx +python@3.7 uv run -- streamlit run

import pandas as pd

import streamlit as st
from streamlit.components.v1 import iframe, html
import altair as alt

from pygwalker.api.streamlit import StreamlitRenderer, init_streamlit_comm

from types import SimpleNamespace

from df import fetch

alt.renderers.set_embed_options(theme="dark")


@st.cache_data(ttl="30m")
def fetch_asset(asset):
    return fetch(asset)


def gen_charts(asset, chart_size={"width": 560, "height": 150}):
    # Gen data
    data = fetch_asset(asset)
    etf_volumes = data.etf_volumes
    price = data.price
    etf_flow_individual = data.etf_flow_individual
    etf_flow_total = data.etf_flow_total
    cum_flow_individual = data.cum_flow_individual
    cum_flow_total = data.cum_flow_total

    # Create bindings for interval selection
    scale_selection = alt.selection_interval(encodings=["x"], bind="scales")

    # Line chart of price
    price = (
        (
            alt.Chart(price)
            .mark_line()
            .encode(
                x=alt.X(
                    "Date:T",
                    axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
                    title="",
                ),
                y=alt.Y("close:Q").scale(zero=False),
                color=alt.value("crimson"),
            )
        )
        .add_params(scale_selection)
        .properties(
            width=chart_size["width"],
            height=chart_size["height"],
        )
    )

    trading_vol_individual = (
        (
            alt.Chart(etf_volumes)
            .transform_fold(
                etf_volumes.drop(columns="Date").columns.to_list(),
                as_=["Funds", "Volume"],
            )
            .mark_line()
            .encode(
                x=alt.X(
                    "Date:T",
                    axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
                    title="",
                ),
                y=alt.Y("Volume:Q", title="Trading Volume Individual"),
                color="Funds:N",
            )
        )
        .add_params(scale_selection)
        .properties(
            width=chart_size["width"],
            height=chart_size["height"],
        )
    )
    trading_vol_total = (
        (
            alt.Chart(etf_volumes)
            .transform_fold(
                etf_volumes.drop(columns="Date").columns.to_list(),
                as_=["Funds", "Volume"],
            )
            .mark_rule()
            .encode(
                x=alt.X(
                    "Date:T",
                    axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
                    title="",
                ),
                y=alt.Y("sum(Volume):Q", title="Trading Volume Total"),
                color=alt.value("teal"),
            )
        )
        .add_params(scale_selection)
        .properties(
            width=chart_size["width"],
            height=chart_size["height"],
        )
    )

    # Net flow individual
    net_flow_individual = (
        (
            alt.Chart(etf_flow_individual)
            .transform_fold(
                etf_flow_individual.drop(columns="Date").columns.to_list(),
                as_=["Funds", "Net Flow"],
            )
            .mark_line()
            .encode(
                x=alt.X(
                    "Date:T",
                    axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
                    title="",
                ),
                y=alt.Y("Net Flow:Q", title="Net Flow Individual"),
                color="Funds:N",
            )
        )
        .add_params(scale_selection)
        .properties(
            width=chart_size["width"],
            height=chart_size["height"],
        )
    )
    net_flow_total = (
        (
            alt.Chart(etf_flow_total)
            .mark_rule()
            .encode(
                x=alt.X(
                    "Date:T",
                    axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
                    title="",
                ),
                y=alt.Y("Total:Q", title="Net Flow Total"),
                color=alt.condition(
                    alt.datum.Total > 0,
                    alt.value("seagreen"),  # The positive color
                    alt.value("orangered"),  # The negative color
                ),
            )
        )
        .add_params(scale_selection)
        .properties(
            width=chart_size["width"],
            height=chart_size["height"],
        )
    )

    # Stacking area chart of flow from individual funds
    cum_flow_individual = (
        (
            alt.Chart(cum_flow_individual)
            .transform_fold(
                cum_flow_individual.drop(columns="Date").columns.to_list(),
                as_=["Funds", "Net Flow"],
            )
            .mark_area()
            .encode(
                x=alt.X(
                    "Date:T",
                    axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
                    title="",
                ),
                y=alt.Y("Net Flow:Q", title="Cumulative Flow Individual"),
                color=alt.Color("Funds:N", scale=alt.Scale(scheme="tableau20")),
            )
        )
        .add_params(scale_selection)
        .properties(
            width=chart_size["width"],
            height=chart_size["height"],
        )
    )

    # Area chart for cumulative flow
    cum_flow_total = (
        (
            alt.Chart(cum_flow_total)
            .transform_calculate(
                negative="datum.Total < 0",
            )
            .mark_area()
            .encode(
                x=alt.X(
                    "Date:T",
                    axis=alt.Axis(tickCount={"interval": "month", "step": 1}),
                    title="",
                ),
                y=alt.Y("Total:Q", title="Cumulative Flow Total", impute={"value": 0}),
                color=alt.Color(
                    "negative:N", title="Negative Flow", scale=alt.Scale(scheme="set2")
                ),
            )
        )
        .add_params(scale_selection)
        .properties(
            width=chart_size["width"],
            height=chart_size["height"],
        )
    )

    return SimpleNamespace(
        price=price,
        trading_vol_individual=trading_vol_individual,
        trading_vol_total=trading_vol_total,
        net_flow_individual=net_flow_individual,
        net_flow_total=net_flow_total,
        cum_flow_individual=cum_flow_individual,
        cum_flow_total=cum_flow_total,
    )


def asset_charts(asset: str, chart_size={"width": "container", "height": 150}):
    charts = gen_charts(asset, chart_size)

    # Vertical concat the charts in each asset into single column of that asset
    all_charts = (
        (
            charts.price
            & charts.trading_vol_individual
            & charts.trading_vol_total
            & charts.net_flow_individual
            & charts.net_flow_total
            & charts.cum_flow_individual
            & charts.cum_flow_total
        )
        .resolve_scale(
            color="independent",
        )
        .properties(
            title=f"{asset} ETF",
        )
    )

    return all_charts


def app():
    # Set page config
    st.set_page_config(layout="wide", page_icon="πŸ“ˆ")
    # Initialize pygwalker communication
    init_streamlit_comm()

    dashboard_tab, single_view, flow_tab, volume_tab, price_tab = st.tabs(
        [
            "Dashboard",
            "View Single ETF",
            "Explore ETF Flow",
            "Explore ETF Volume",
            "Explore ETF Asset Price",
        ]
    )

    btc = fetch_asset("BTC")
    eth = fetch_asset("ETH")

    with dashboard_tab:
        btc_charts = asset_charts(
            "BTC", chart_size={"width": "container", "height": 150}
        )
        eth_charts = asset_charts(
            "ETH", chart_size={"width": "container", "height": 150}
        )
        # Display charts
        btc_chart_col, eth_chart_col = st.columns(2)
        with btc_chart_col:
            st.altair_chart(btc_charts, use_container_width=True)
        with eth_chart_col:
            st.altair_chart(eth_charts, use_container_width=True)

        # Display iframes
        btc_col, eth_col = st.columns(2)
        with btc_col:
            html(btc.tdv, height=640)
            iframe(btc.url, height=1200, scrolling=True)
        with eth_col:
            html(eth.tdv, height=640)
            iframe(eth.url, height=1200, scrolling=True)
    with single_view:
        asset = st.selectbox(
            "Asset to view",
            ("BTC", "ETH"),
        )
        charts = asset_charts(asset, chart_size={"width": "container", "height": 300})
        st.altair_chart(charts, use_container_width=True)
        match asset:
            case "BTC":
                html(btc.tdv, height=640)
            case "ETH":
                html(eth.tdv, height=640)
        iframe(fetch_asset(asset).url, height=1200, scrolling=True)
    with flow_tab:
        btc_flow, eth_flow = btc.etf_flow, eth.etf_flow
        btc_flow["Asset"] = "BTC"
        eth_flow["Asset"] = "ETH"
        df = pd.concat([btc_flow, eth_flow])
        StreamlitRenderer(df).explorer()
    with volume_tab:
        btc_volume, eth_volume = btc.etf_volumes, eth.etf_volumes
        btc_volume["Asset"] = "BTC"
        eth_volume["Asset"] = "ETH"
        df = pd.concat([btc_volume, eth_volume])
        StreamlitRenderer(df).explorer()
    with price_tab:
        btc_price, eth_price = btc.price, eth.price
        btc_price["Asset"] = "BTC"
        eth_price["Asset"] = "ETH"
        df = pd.concat([btc_price, eth_price])
        StreamlitRenderer(df).explorer()


if __name__ == "__main__":
    app()