Update app.py
Browse files
app.py
CHANGED
@@ -1,204 +1,124 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
from
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
)
|
27 |
-
from
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
|
|
91 |
|
92 |
-
demo
|
93 |
-
with demo:
|
94 |
-
gr.HTML(TITLE)
|
95 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
-
|
97 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
-
|
101 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
-
|
104 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
105 |
-
with gr.Column():
|
106 |
-
with gr.Row():
|
107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
with gr.Accordion(
|
111 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
-
open=False,
|
113 |
-
):
|
114 |
-
with gr.Row():
|
115 |
-
finished_eval_table = gr.components.Dataframe(
|
116 |
-
value=finished_eval_queue_df,
|
117 |
-
headers=EVAL_COLS,
|
118 |
-
datatype=EVAL_TYPES,
|
119 |
-
row_count=5,
|
120 |
-
)
|
121 |
-
with gr.Accordion(
|
122 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
-
open=False,
|
124 |
-
):
|
125 |
-
with gr.Row():
|
126 |
-
running_eval_table = gr.components.Dataframe(
|
127 |
-
value=running_eval_queue_df,
|
128 |
-
headers=EVAL_COLS,
|
129 |
-
datatype=EVAL_TYPES,
|
130 |
-
row_count=5,
|
131 |
-
)
|
132 |
-
|
133 |
-
with gr.Accordion(
|
134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
-
open=False,
|
136 |
-
):
|
137 |
-
with gr.Row():
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
-
with gr.Row():
|
145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
-
label="Model type",
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
-
)
|
158 |
-
|
159 |
-
with gr.Column():
|
160 |
-
precision = gr.Dropdown(
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
-
|
176 |
-
submit_button = gr.Button("Submit Eval")
|
177 |
-
submission_result = gr.Markdown()
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
-
|
191 |
-
with gr.Row():
|
192 |
-
with gr.Accordion("📙 Citation", open=False):
|
193 |
-
citation_button = gr.Textbox(
|
194 |
-
value=CITATION_BUTTON_TEXT,
|
195 |
-
label=CITATION_BUTTON_LABEL,
|
196 |
-
lines=20,
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
-
)
|
200 |
-
|
201 |
-
scheduler = BackgroundScheduler()
|
202 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
-
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
|
6 |
+
# Description and Introduction texts
|
7 |
+
DESCRIPTION = """
|
8 |
+
Independent performance benchmark of LLMs with various Inference Engines. Definitions are below the table.
|
9 |
+
"""
|
10 |
+
|
11 |
+
INTRODUCTION = """
|
12 |
+
**Introduction**
|
13 |
+
In our ongoing quest to help developers find the right libraries and LLMs for their use cases.
|
14 |
+
|
15 |
+
We tested them across six different inference engines (vLLM, TGI, TensorRT-LLM, Tritonvllm, Deepspeed-mii, ctranslate) on A100 GPUs hosted on Azure, ensuring a neutral playing field separate from our Inferless platform.
|
16 |
+
The goal?
|
17 |
+
To help developers, researchers, and AI enthusiasts pinpoint the best LLMs for their needs, whether for development or production.
|
18 |
+
"""
|
19 |
+
|
20 |
+
HOW_WE_TESTED = """
|
21 |
+
**How we tested?**
|
22 |
+
Here's how we ensured consistent, reliable benchmarks:
|
23 |
+
* **Platform:** All tests ran on A100 GPUs from Azure, providing a level playing field.
|
24 |
+
* **Setup:** Docker containers for each library ensured a consistent environment.
|
25 |
+
* **Configuration:** Standard settings (temperature 0.5, top_p 1) kept the focus on performance, not external variables.
|
26 |
+
* **Prompts & Token Ranges:** We used six distinct prompts with input lengths from 20 to 2,000 tokens and tested generation lengths of 100, 200, and 500 tokens to evaluate each library's flexibility.
|
27 |
+
* **Models & Libraries Tested:** We evaluated Phi-3-medium-128k-instruct, Meta-Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, Qwen2-7B-Instruct, and Gemma-2-9b-it using Text Generation Inference (TGI), vLLM, DeepSpeed Mii, CTranslate2, Triton with vLLM Backend, and TensorRT-LLM.
|
28 |
+
"""
|
29 |
+
|
30 |
+
# Replace 'path/to/your/csv/folder' with the actual path to your folder containing CSV files
|
31 |
+
csv_folder_path = 'result_csv/'
|
32 |
+
|
33 |
+
# Function to read all CSV files from a folder and rearrange columns
|
34 |
+
def read_and_process_csv_files(folder_path):
|
35 |
+
all_data = []
|
36 |
+
for filename in os.listdir(folder_path):
|
37 |
+
if filename.endswith('.csv'):
|
38 |
+
file_path = os.path.join(folder_path, filename)
|
39 |
+
df = pd.read_csv(file_path)
|
40 |
+
all_data.append(df)
|
41 |
+
|
42 |
+
combined_df = pd.concat(all_data, ignore_index=True)
|
43 |
+
|
44 |
+
# Rearrange columns
|
45 |
+
columns_order = [
|
46 |
+
"Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count",
|
47 |
+
"Input_Tokens", "Output_Tokens", "Input", "Output"
|
48 |
+
]
|
49 |
+
|
50 |
+
# Ensure all required columns exist, if not, create them with NaN values
|
51 |
+
for col in columns_order:
|
52 |
+
if col not in combined_df.columns:
|
53 |
+
combined_df[col] = pd.NA
|
54 |
+
|
55 |
+
# Select and order the columns
|
56 |
+
return combined_df[columns_order]
|
57 |
+
|
58 |
+
df = read_and_process_csv_files(csv_folder_path)
|
59 |
+
|
60 |
+
def get_leaderboard_df():
|
61 |
+
return df
|
62 |
+
|
63 |
+
def add_new_entry(file):
|
64 |
+
global df
|
65 |
+
if file is None:
|
66 |
+
return df, "No file uploaded."
|
67 |
+
|
68 |
+
# Read the uploaded CSV file
|
69 |
+
new_df = pd.read_csv(file.name)
|
70 |
+
|
71 |
+
# Rearrange columns to match the existing DataFrame
|
72 |
+
columns_order = [
|
73 |
+
"Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count",
|
74 |
+
"Input_Tokens", "Output_Tokens", "Input", "Output"
|
75 |
+
]
|
76 |
+
for col in columns_order:
|
77 |
+
if col not in new_df.columns:
|
78 |
+
new_df[col] = pd.NA
|
79 |
+
new_df = new_df[columns_order]
|
80 |
+
|
81 |
+
# Append the new data to the existing DataFrame
|
82 |
+
df = pd.concat([df, new_df], ignore_index=True)
|
83 |
+
|
84 |
+
# Save the uploaded file to the CSV folder
|
85 |
+
filename = os.path.basename(file.name)
|
86 |
+
destination = os.path.join(csv_folder_path, filename)
|
87 |
+
shutil.copy(file.name, destination)
|
88 |
+
|
89 |
+
return df, f"File '{filename}' uploaded and data added successfully!"
|
90 |
+
|
91 |
+
with gr.Blocks() as demo:
|
92 |
+
gr.Markdown("# LLM Inference Leaderboard")
|
93 |
+
|
94 |
+
# About section at the top
|
95 |
+
with gr.Column():
|
96 |
+
gr.Markdown("---")
|
97 |
+
gr.Markdown(DESCRIPTION)
|
98 |
+
gr.Markdown(INTRODUCTION)
|
99 |
+
gr.Markdown("---")
|
100 |
+
|
101 |
+
# Tabs for Leaderboard and Add New Entry
|
102 |
+
with gr.Tabs():
|
103 |
+
with gr.TabItem("Leaderboard"):
|
104 |
+
leaderboard = gr.DataFrame(df)
|
105 |
+
|
106 |
+
with gr.TabItem("Add New Entry"):
|
107 |
+
file_upload = gr.File(label="Upload CSV File")
|
108 |
+
submit_button = gr.Button("Add Entry")
|
109 |
+
result = gr.Markdown()
|
110 |
+
|
111 |
+
# How we tested section at the bottom
|
112 |
+
with gr.Column():
|
113 |
+
gr.Markdown("---")
|
114 |
+
gr.Markdown(HOW_WE_TESTED)
|
115 |
+
|
116 |
+
submit_button.click(
|
117 |
+
add_new_entry,
|
118 |
+
inputs=[file_upload],
|
119 |
+
outputs=[leaderboard, result]
|
120 |
)
|
121 |
|
122 |
+
demo.load(get_leaderboard_df, outputs=[leaderboard])
|
123 |
|
124 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|