rbgo commited on
Commit
ca89999
1 Parent(s): 6a8d197

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -199
app.py CHANGED
@@ -1,204 +1,124 @@
1
  import gradio as gr
2
- from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
-
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
-
31
-
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
-
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
-
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  )
90
 
 
91
 
92
- demo = gr.Blocks(css=custom_css)
93
- with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
-
97
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
- with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
-
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
114
- with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
120
- )
121
- with gr.Accordion(
122
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
- with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
131
- )
132
-
133
- with gr.Accordion(
134
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
137
- with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
143
- )
144
- with gr.Row():
145
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
146
-
147
- with gr.Row():
148
- with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
- interactive=True,
157
- )
158
-
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
- )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
-
176
- submit_button = gr.Button("Submit Eval")
177
- submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
- )
190
-
191
- with gr.Row():
192
- with gr.Accordion("📙 Citation", open=False):
193
- citation_button = gr.Textbox(
194
- value=CITATION_BUTTON_TEXT,
195
- label=CITATION_BUTTON_LABEL,
196
- lines=20,
197
- elem_id="citation-button",
198
- show_copy_button=True,
199
- )
200
-
201
- scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
- scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
  import gradio as gr
 
2
  import pandas as pd
3
+ import os
4
+ import shutil
5
+
6
+ # Description and Introduction texts
7
+ DESCRIPTION = """
8
+ Independent performance benchmark of LLMs with various Inference Engines. Definitions are below the table.
9
+ """
10
+
11
+ INTRODUCTION = """
12
+ **Introduction**
13
+ In our ongoing quest to help developers find the right libraries and LLMs for their use cases.
14
+
15
+ We tested them across six different inference engines (vLLM, TGI, TensorRT-LLM, Tritonvllm, Deepspeed-mii, ctranslate) on A100 GPUs hosted on Azure, ensuring a neutral playing field separate from our Inferless platform.
16
+ The goal?
17
+ To help developers, researchers, and AI enthusiasts pinpoint the best LLMs for their needs, whether for development or production.
18
+ """
19
+
20
+ HOW_WE_TESTED = """
21
+ **How we tested?**
22
+ Here's how we ensured consistent, reliable benchmarks:
23
+ * **Platform:** All tests ran on A100 GPUs from Azure, providing a level playing field.
24
+ * **Setup:** Docker containers for each library ensured a consistent environment.
25
+ * **Configuration:** Standard settings (temperature 0.5, top_p 1) kept the focus on performance, not external variables.
26
+ * **Prompts & Token Ranges:** We used six distinct prompts with input lengths from 20 to 2,000 tokens and tested generation lengths of 100, 200, and 500 tokens to evaluate each library's flexibility.
27
+ * **Models & Libraries Tested:** We evaluated Phi-3-medium-128k-instruct, Meta-Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, Qwen2-7B-Instruct, and Gemma-2-9b-it using Text Generation Inference (TGI), vLLM, DeepSpeed Mii, CTranslate2, Triton with vLLM Backend, and TensorRT-LLM.
28
+ """
29
+
30
+ # Replace 'path/to/your/csv/folder' with the actual path to your folder containing CSV files
31
+ csv_folder_path = 'result_csv/'
32
+
33
+ # Function to read all CSV files from a folder and rearrange columns
34
+ def read_and_process_csv_files(folder_path):
35
+ all_data = []
36
+ for filename in os.listdir(folder_path):
37
+ if filename.endswith('.csv'):
38
+ file_path = os.path.join(folder_path, filename)
39
+ df = pd.read_csv(file_path)
40
+ all_data.append(df)
41
+
42
+ combined_df = pd.concat(all_data, ignore_index=True)
43
+
44
+ # Rearrange columns
45
+ columns_order = [
46
+ "Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count",
47
+ "Input_Tokens", "Output_Tokens", "Input", "Output"
48
+ ]
49
+
50
+ # Ensure all required columns exist, if not, create them with NaN values
51
+ for col in columns_order:
52
+ if col not in combined_df.columns:
53
+ combined_df[col] = pd.NA
54
+
55
+ # Select and order the columns
56
+ return combined_df[columns_order]
57
+
58
+ df = read_and_process_csv_files(csv_folder_path)
59
+
60
+ def get_leaderboard_df():
61
+ return df
62
+
63
+ def add_new_entry(file):
64
+ global df
65
+ if file is None:
66
+ return df, "No file uploaded."
67
+
68
+ # Read the uploaded CSV file
69
+ new_df = pd.read_csv(file.name)
70
+
71
+ # Rearrange columns to match the existing DataFrame
72
+ columns_order = [
73
+ "Model_Name", "Library", "TTFT", "Tokens-per-Second", "Token_Count",
74
+ "Input_Tokens", "Output_Tokens", "Input", "Output"
75
+ ]
76
+ for col in columns_order:
77
+ if col not in new_df.columns:
78
+ new_df[col] = pd.NA
79
+ new_df = new_df[columns_order]
80
+
81
+ # Append the new data to the existing DataFrame
82
+ df = pd.concat([df, new_df], ignore_index=True)
83
+
84
+ # Save the uploaded file to the CSV folder
85
+ filename = os.path.basename(file.name)
86
+ destination = os.path.join(csv_folder_path, filename)
87
+ shutil.copy(file.name, destination)
88
+
89
+ return df, f"File '{filename}' uploaded and data added successfully!"
90
+
91
+ with gr.Blocks() as demo:
92
+ gr.Markdown("# LLM Inference Leaderboard")
93
+
94
+ # About section at the top
95
+ with gr.Column():
96
+ gr.Markdown("---")
97
+ gr.Markdown(DESCRIPTION)
98
+ gr.Markdown(INTRODUCTION)
99
+ gr.Markdown("---")
100
+
101
+ # Tabs for Leaderboard and Add New Entry
102
+ with gr.Tabs():
103
+ with gr.TabItem("Leaderboard"):
104
+ leaderboard = gr.DataFrame(df)
105
+
106
+ with gr.TabItem("Add New Entry"):
107
+ file_upload = gr.File(label="Upload CSV File")
108
+ submit_button = gr.Button("Add Entry")
109
+ result = gr.Markdown()
110
+
111
+ # How we tested section at the bottom
112
+ with gr.Column():
113
+ gr.Markdown("---")
114
+ gr.Markdown(HOW_WE_TESTED)
115
+
116
+ submit_button.click(
117
+ add_new_entry,
118
+ inputs=[file_upload],
119
+ outputs=[leaderboard, result]
120
  )
121
 
122
+ demo.load(get_leaderboard_df, outputs=[leaderboard])
123
 
124
+ demo.launch()