Spaces:
Sleeping
Sleeping
File size: 24,248 Bytes
5d48962 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
import gradio as gr
import torch
from PIL import Image
import torch.nn.functional as F
import numpy as np
import pickle
import json
import requests
from transformers import CLIPProcessor, AutoModelForSemanticSegmentation, AutoFeatureExtractor, CLIPModel
from torch import nn
import io
# Initialize the models using huggingface
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the CLIP model from hugging face
clip_hg = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device).eval()
processor_hg = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
seg_hg = AutoModelForSemanticSegmentation.from_pretrained('mattmdjaga/segformer_b2_clothes').to(device).eval()
extractor_hg = AutoFeatureExtractor.from_pretrained('mattmdjaga/segformer_b2_clothes', reduce_labels=False)
# Load the data and normalize the embeddings just in case.
features = torch.load('features.pt').to(device)
features_main = F.normalize(features)
item_embeddings = torch.load('item_embeds.pt').to(device)
item_embeddings = F.normalize(item_embeddings)
url_list_main = pickle.load(open('new_url_list.pt','rb'))
clothes_tree = json.load(open('clothes_tree_new_data.json'))
rec_dic = json.load(open('top5_mini_new.json'))
# URL for an image if no image is selected
url = 'https://bitsofco.de/content/images/2018/12/Screenshot-2018-12-16-at-21.06.29.png'
# Set up all the variables
label = ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
clothing_type = ['top', 'bottom', 'dress']
top_type = ['t-shirt', 'tank top', 'blouse', 'sweater', 'hoodie', 'cardigan','turtleneck','blazer','polo','collar shirt','knitwear',
'tuxedo', 'Compression top','duffle coat', 'peacoat', 'long coat', 'trench coat',
'biker jacket', 'blazer', 'bomber jacket', 'hooded jacket', 'leather jacket', 'military jacket', 'down jacket', 'shirt jacket',
'suit jacket', 'dinner jacket', 'gillet', 'track jacket'
]
bottom_type = ['skirt', 'leggings', 'sweatpants', 'skinny pants', 'tailored pants', 'track pants', 'wide-leg pants'
, 'cargo shorts', 'denim shorts', 'track shorts', 'compression shorts', 'cycling shorts','denim pants',
'cargo pants', 'chino pants', 'chino shorts'
]
dress_type = ['casual dress', 'cocktail dress', 'evening dress', 'maxi dress', 'mini dress', 'party dress', 'sundress']
styles = ['plain','polka dot','striped','floral','checkered','zebra print','leopard print','plaid','paisley']
colors = ['blue','red','pink','orange','yellow','purple','gold','white','off white','black','grey','green','brown','beige','cream','navy','maroon']
top_list = [f"{t}, {color}, {style}" for t in top_type for style in styles for color in colors]
bottom_list = [f"{t}, {color}, {style}" for t in bottom_type for style in styles for color in colors]
dress_list = [f"{t}, {color}, {style}" for t in dress_type for style in styles for color in colors]
all_items = top_list + bottom_list + dress_list
clothing_type = ['top', 'bottom', 'dress']
all_types = {'top' :top_type,
'bottom' : bottom_type,
'dress':dress_type}
patterns_list = styles.copy()
colors_list = colors.copy()
clicks = 0
c_types = []
types = []
colors = []
patterns = []
new_files = []
out = []
clothes_click = 0
global_mask = None
mask_choice = 'Clothes'
# Define all needed functions
def find_closest(target_feature, features):
'''
Purpose: Find the closest embedding to the given image embedding
Inputs:
target_feature (tenosr): embedding of our search item
features (tensor): embedding of all the items in the dataset
Outputs:
group_sorted_indices (list): indicies of the closest items in a sorted order
'''
cos_similarity = features.to(torch.float32) @ target_feature.to(torch.float32).T
group_sorted_indices = torch.argsort(cos_similarity, descending=True,dim=0).squeeze(1).cpu().tolist()
return group_sorted_indices
def filter_function(choices):
'''
Purpose: Find a list of items that match the given filters
Inputs:
choices (list): list of filters
Outputs:
Upating the choices of filters
'''
# Import the global variables
global clicks
global c_types
global types
global colors
global patterns
global new_files
new_choices = []
# Clicks is just a reference to how far we are in the filter tree
# We keep going down and saving the selected options until we reach the end
# Then we add items which had the desired filters to the new_choices list
# This is then used to filter out the items that don't match the filters in search
if clicks == 0:
temp_choices = [choice for choice in choices if choice in clothing_type]
if len(temp_choices) == 0:
temp_choices = clothing_type
for choice in temp_choices:
c_types.append(choice)
new_choices.extend(list(clothes_tree[choice].keys()))
if clicks == 1:
temp_choices = [choice for c_type in c_types for choice in choices if choice in all_types[c_type]]
if len(temp_choices) == 0:
types = []
for c_type in c_types:
types.extend([(t,c_type) for t in clothes_tree[c_type].keys()])
for choice in temp_choices:
if choice in clothes_tree['top']:
types.append((choice,'top'))
elif choice in clothes_tree['bottom']:
types.append((choice,'bottom'))
else :
types.append((choice,'dress'))
new_choices = list(clothes_tree['top']['t-shirt'].keys())
if clicks == 2:
temp_choices = [choice for choice in choices if choice in colors_list]
if len(temp_choices) == 0:
colors = colors_list.copy()
for choice in temp_choices:
colors.append(choice)
new_choices = list(clothes_tree['top']['t-shirt']['red'].keys())
if clicks == 3:
temp_choices = [choice for choice in choices if choice in patterns_list]
if len(temp_choices) == 0:
patterns = patterns_list.copy()
for choice in temp_choices:
patterns.append(choice)
for type_,c_type in types:
for color in colors:
for pattern in patterns:
new_files.extend(clothes_tree[c_type][type_][color][pattern])
clicks += 1
new_choices = ['Press Search to use the set filter. Dont press this button']
return gr.update(choices=new_choices, label='Press Search to use the filter or press filter to reset the filter')
if clicks == 4:
c_types.clear()
types.clear()
colors.clear()
patterns.clear()
new_files.clear()
clicks = 0
new_choices = ['top','bottom','dress']
return gr.update(choices=new_choices,label='Select the type of clothing you want to search for')
clicks += 1
return gr.update(choices=new_choices)
def set_theme(theme):
'''
Purpose: Set the theme using filters
Inputs:
theme (string): theme to be set
Outputs:
Upadting to show the chosen theme
'''
global new_files
new_files.clear()
# Here we just manually set the filters to the desired theme
# Then we just find images with the desired filters
if theme == 'Red carpet':
types = [('evening dress','dress'), ('tuxedo','top'), ('suit jacket','top'), ('dinner jacket','top'),('maxi dress','dress')]
colors = ['red','purple','gold','white','off white','black','beige','cream','navy','maroon']
patterns = ['plain']
elif theme == 'Sports':
types = [ ('track shorts','bottom'), ('track pants','bottom'), ('track jacket','top'),
('Compression top','top'),('cycling shorts','bottom'),('compression shorts','bottom'),('tank top','top')]
colors = colors_list.copy()
patterns = patterns_list.copy()#
elif theme =='My preference':
types = [('evening dress','dress'), ('tuxedo','top'), ('suit jacket','top'), ('dinner jacket','top'),('maxi dress','dress')]
colors = ['red','purple','gold']
patterns = ['plain','zebra print']
else:
return gr.update(label='Chosen theme: None')
for type_,c_type in types:
for color in colors:
for pattern in patterns:
new_files.extend(clothes_tree[c_type][type_][color][pattern])
return gr.update(label='Chosen theme: '+theme)
def segment(img):
'''
Purpose: Segment the image to get the mask
Inputs:
img(pil image): image to be segmented
Outputs:
img(pil image): original image
arr(numpy array): array of image
pred_seg(tensor): mask
'''
# Get the segmentation mask then umsample it to the original size
encoding = extractor_hg(img.convert('RGB'), return_tensors="pt")
pixel_values = encoding.pixel_values.to(device)
outputs = seg_hg(pixel_values=pixel_values)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=img.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
arr_img = np.array(img)
return img, arr_img, pred_seg
def clean_img(img):
'''
Purpose: Clean the image to remove the chosen items
Inputs:
img(numpy array): image to be cleaned
Outputs:
img(numpy array): cleaned image
'''
# Here we remove pixels whihc are not in our desired class
global global_mask
global mask_choice
bad = []
mask_size = global_mask.shape
img_size = img.shape[:2]
if img_size != mask_size:
return img
if mask_choice=='Person':
bad.append(0)
elif mask_choice=='Clothes':
bad.extend([0,2,15,14,13,12,11])
elif mask_choice=='Upper Body/Dress':
bad.extend([0,5,6,9,10,12,13,16])
elif mask_choice=='Lower Body':
bad.extend([0,1,2,3,4,7,8,11,14,15,16])
elif mask_choice=='Upper Body/Dress, no person':
bad.extend([0,1,2,15,11,14,5,6,9,10,12,13,16,3])
for i in bad:
global_mask[global_mask==i] = 50
img[global_mask==50] = 255
return img
def label_to_rec_lables (label):
'''
Purpose: Use the label to get the corresponding reccomendation labels
Inputs:
label(string): label of the image
Outputs:
rec_labels(list): list of reccomendation labels
'''
# This function is used to get the reccomendation labels to then
# filter the reccomendation search to them
labels = label.split(',')
new_label = rec_dic[','.join(labels[:2])]
print('Reccomendation label: ',new_label)
n = 5 if len(new_label) >= 5 else len(new_label)
labels = []
labels = [new_label[i][0].split(',') for i in range(n)]
chosen = []
c_types = ['top','bottom','dress']
for item in labels:
label_type = item[0]
label_color = item[1].strip()
for c_type in c_types:
if label_type in all_types[c_type]:
item_type = c_type
chosen.append([item_type,label_type,label_color])
print('Chosen: ',chosen)
return chosen
def filter_features(labels, rec=False, rec_items=None):
'''
Purpose: Filter the features to only contain the chosen label
Inputs:
labels(str): label string
rec(bool): if the function is called from the recommendation function
rec_items(list): list containing the label info
Outputs:
url_list(list): list of urls after filtering
features(tensor): features after filtering
'''
global url_list_main
global features_main
# Here we filter the features to only contain the desired labels and
# also provide the new url list
labels = labels.split(',')
label_type = labels[0]
label_color = labels[1].strip()
c_types = ['top', 'bottom', 'dress']
for c_type in c_types:
if label_type in all_types[c_type]:
item_type = c_type
new_list = set()
if rec:
item_type = rec_items[0]
label_type = rec_items[1]
label_color = rec_items[2]
for pattern in patterns_list:
new_list.update(clothes_tree[item_type][label_type][label_color][pattern])
else:
#for color in colors_list:
color = label_color
for pattern in patterns_list:
new_list.update(clothes_tree[item_type][label_type][color][pattern])
new_files = list(new_list)
temp_url = []
temp_features = torch.zeros(len(new_files), 512).to(device)
for c,i in enumerate(new_files):
temp_url.append(url_list_main[i])
temp_features[c] = features_main[i]
url_list = temp_url
features = temp_features.to(torch.float32)
return url_list, features
def get_image_from_url(idx,url_list,items=5):
'''
Purpose: Get a list of images from the url list using the indecies
Inputs:
idx(list): list of indecies
url_list(list): list of urls
items(int): number of images to return
Outputs:
images(list): list of images
'''
# Looping until we have the desired number of images
res = []
i = 0
n = 15 if len(idx) > 15 else len(idx)
while len(res) != items and i != n:
try:
req = requests.get(url_list[idx[i]],stream=True,timeout=5)
img = Image.open(req.raw).convert('RGB')
img = np.array(img)
res.append(img)
i += 1
except:
print('Error with: ' + url_list[i])
i += 1
continue
return res
def get_label(img):
'''
Purpose: Get the label of the image
Inputs:
img(numpy array or pil image): image to get label of
Outputs:
label(string): label of the image
'''
img_features = processor_hg(images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
img_features = clip_hg.get_image_features(**img_features)
idx = find_closest(img_features,item_embeddings)[0]
label = all_items[idx]
return label
def resize_img(img,thresh=384):
'''
Purpose: Resize the image to have the largest dimension be thresh
Inputs:
img(pil image): image to resize
thresh(int): threshold for the largest dimension
Outputs:
img(pil image): resized image
'''
size = img.size
larger_dim = 0 if size[0] > size[1] else 1
if size[larger_dim] > thresh:
size = (int(size[0] * thresh / size[larger_dim]), int(size[1] * thresh / size[larger_dim]))
img = img.resize(size)
return img
def segment_function(choice):
'''
Purpose: Set the mask choice so that it can be called during search
Inputs:
choice(string): mask choice
Outputs:
None
'''
global mask_choice
mask_choice = choice
return gr.update(label =f'Selection: {choice}')
def rec_function(option):
'''
Purpose: using an image to get a reccomendation return that image and the reccomendations
Inputs:
option(int): option to use
Outputs:
rec_out(list): list of images
temp_out(numpy array): choice image
'''
global out
global url_list_main
global features_main
# Here we get the items which should be reccomended based on the
# chosen image. Then we find the closest items to the chosen image
# out of the reccomended items. Finally we crop the images so that
# we only see the reccomended items in the output
if not out:
req = requests.get(url,stream=True)
img = np.array(Image.open(req.raw).convert('RGB'))
rec_out = [img]*5
return rec_out
img = Image.fromarray(out[option])
choice_img = resize_img(img)
label = get_label(choice_img)
target_labels = label_to_rec_lables(label)
temp_out = []
img_features = processor_hg(images=choice_img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
img_features = clip_hg.get_image_features(**img_features)
n = len(target_labels)
if n == 1:
return_items = 5
elif n == 2:
return_items = 3
elif n == 3:
return_items = 2
else:
return_items = 1
for item in target_labels:
url_list, features = filter_features(label, rec=True, rec_items=item)
idx = find_closest(img_features, features)[:5]
temp_out.extend(get_image_from_url(idx,url_list,items=return_items))
rec_out = []
for temp_img in temp_out:
temp_img = resize_img(Image.fromarray(temp_img))
img, seg_img, out_mask = segment(temp_img)
label_type = label.split(',')[0].strip()
bad = []
if label_type in top_type or label_type in dress_type:
bad.extend([0,1,2,3,4,7,8,11,14,15,16])
elif label_type in bottom_type:
bad.extend([0,5,6,9,10,12,13,16])
for i in bad:
out_mask[out_mask==i] = 50
img = np.array(img)
img[out_mask==50] = 255
h, w = img.shape[:2]
# find the highest and lowest y-coordinates where the pixel is not white
top = 0
bottom = h
for i in range(h):
if np.all(img[i] == 255):
top = i
else:
break
for i in range(h-1, 0, -1):
if np.all(img[i] == 255):
bottom = i
else:
break
# find the highest and lowest x-coordinates where the pixel is not white
left = 0
right = w
for i in range(w):
if np.all(img[:, i] == 255):
left = i
else:
break
for i in range(w-1, 0, -1):
if np.all(img[:, i] == 255):
right = i
else:
break
# crop the image
# add 10 pixels to the top and bottom if those are not the edges of the image
if top - 10 > 0:
top -= 10
if bottom + 10 < h:
bottom += 10
# add 10 pixels to the left and right if those are not the edges of the image
if left - 10 > 0:
left -= 10
if right + 10 < w:
right += 10
if top > bottom or right < left:
rec_out.append(temp_img)
else:
temp_img = np.array(temp_img)
img = temp_img[top:bottom, left:right]
rec_out.append(img)
temp_out = [choice_img]
return rec_out, temp_out
def reset_values():
'''
Purpose: reset the values of the global variables
Inputs:
None
Outputs:
None
'''
global global_mask
global out
global mask_choice
global clicks
global c_types
global types
global colors
global patterns
global new_files
global_mask = None
out = None
mask_choice = None
clicks = 0
c_types.clear()
types.clear()
colors.clear()
patterns.clear()
new_files.clear()
return [gr.update(choices=['top','bottom','dress'],value=[]),gr.update(choices=['Person','Clothes','Upper Body/Dress','Upper Body/Dress, no person','Lower Body'],value=None)
,gr.update(value=None), gr.update(value=[]),gr.update(value=[]),gr.update(value=0)]
def search_function(img, text, use_choice,use_label):
'''
Purpose: search for images based on the text input or image input
Inputs:
img(pil image): image input
text(string): text input
use_choice(boolean): Boolen to know if to use image or text
use_label(boolean): whether to use the label
Outputs:
out(list): list of images
'''
global new_files
global global_mask
global out
use_img = False
use_text = False
if use_choice == 'Use Image':
use_img = True
elif use_choice == 'Use Text':
use_text = True
if new_files:
global url_list_main
global features_main
temp_url = []
new_files = list(set(new_files))
temp_features = torch.zeros(len(new_files), 512).to(device)
for c,i in enumerate(new_files):
temp_url.append(url_list_main[i])
temp_features[c] = features_main[i]
url_list = temp_url
features = temp_features.to(torch.float32)
else:
features = features_main.clone()
url_list = url_list_main.copy()
if use_text and not use_img:
text_features = processor_hg(text=text, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
text_features = clip_hg.get_text_features(**text_features)
idx = find_closest(text_features, features)[:15]
out = get_image_from_url(idx,url_list)
else :
if not isinstance(global_mask,type(None)):
seg_img = clean_img(img)
else:
seg_img = img
img = Image.fromarray(seg_img)
label = get_label(img)
print(label)
if not new_files and use_label:
url_list, features = filter_features(label)
img_features = processor_hg(images=img, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
img_features = clip_hg.get_image_features(**img_features)
idx = find_closest(img_features, features)[:15]
out = get_image_from_url(idx,url_list)
if use_img:
out.pop()
out.insert(0, seg_img)
return out
def search(img,text, choice,use_label,rotation):
global global_mask
try:
img = Image.fromarray(img).convert('RGB')
except:
img = Image.open(requests.get(url, stream=True).raw).convert('RGB')
img = img.rotate(rotation)
img = resize_img(img)
pil, img, out_mask = segment(img)
global_mask = out_mask
res = search_function(img, text, choice,use_label)
return res
# Define the app layout
with gr.Blocks() as demo:
gr.Markdown("Search using image segmentation")
with gr.Tab("Search"):
with gr.Row():
search_image = gr.Image()
search_input = [search_image,gr.Textbox(lines=2, label="Search Text")]
with gr.Column():
search_type = gr.Radio(choices=['Use Image','Use Text'],label='Select the type of search you want to perform',value='Use Image')
use_label = gr.Checkbox(label="Use Label",value=True)
image_output = [gr.Gallery(label='Outputs')]
rec_out = [gr.Gallery(label='Recommendations',interactive=True)]
with gr.Row():
rec_selector = gr.Radio(label='Select which item you want a recommendation for',choices = [1,2,3,4],value=1)
rec_button = gr.Button("Get Recommendation")
with gr.Row():
clothes_selector = gr.Radio(label='Choose a segmentation',
choices=['Person','Clothes','Upper Body/Dress','Upper Body/Dress, no person','Lower Body'],interactive=True)
theme_radio = gr.Radio(label='Choose a theme',choices=['None','Red carpet','Sports'],interactive=True)
rotation_radio = gr.Radio(label='Choose a rotation',choices=[0,90,180,270],interactive=True,value=0)
with gr.Row():
filter_checkbox = gr.CheckboxGroup(label='Choose the clothing types', choices=['top','bottom','dress'],interactive=True,value=['top'])
filter_button = gr.Button("Filter Button")
search_button = gr.Button("Search Button")
clothes_selector.change(segment_function,inputs=[clothes_selector],outputs=clothes_selector)
search_image.change(reset_values, inputs=None, outputs=[filter_checkbox,clothes_selector,theme_radio,image_output[0],rec_out[0],rotation_radio])
theme_radio.change(set_theme, inputs=theme_radio, outputs=theme_radio)
rec_button.click(rec_function, inputs=rec_selector, outputs=[rec_out[0],image_output[0]])
filter_button.click(filter_function, inputs=filter_checkbox, outputs=filter_checkbox)
search_button.click(search, inputs=search_input+[search_type,use_label,rotation_radio], outputs=image_output)
demo.launch(share=False) |