File size: 24,248 Bytes
5d48962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import gradio as gr
import torch
from PIL import Image
import torch.nn.functional as F
import numpy as np
import pickle
import json
import requests
from transformers import CLIPProcessor, AutoModelForSemanticSegmentation, AutoFeatureExtractor, CLIPModel
from torch import nn
import io

# Initialize the models using huggingface

device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the CLIP model from hugging face
clip_hg = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device).eval()
processor_hg = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
seg_hg = AutoModelForSemanticSegmentation.from_pretrained('mattmdjaga/segformer_b2_clothes').to(device).eval()
extractor_hg = AutoFeatureExtractor.from_pretrained('mattmdjaga/segformer_b2_clothes', reduce_labels=False)

# Load the data and normalize the embeddings just in case. 
features = torch.load('features.pt').to(device)
features_main = F.normalize(features)
item_embeddings = torch.load('item_embeds.pt').to(device)
item_embeddings = F.normalize(item_embeddings)
url_list_main = pickle.load(open('new_url_list.pt','rb'))
clothes_tree = json.load(open('clothes_tree_new_data.json'))
rec_dic = json.load(open('top5_mini_new.json'))

# URL for an image if no image is selected
url = 'https://bitsofco.de/content/images/2018/12/Screenshot-2018-12-16-at-21.06.29.png'

# Set up all the variables

label =  ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
                  'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']


clothing_type = ['top', 'bottom', 'dress']
top_type = ['t-shirt', 'tank top', 'blouse', 'sweater', 'hoodie', 'cardigan','turtleneck','blazer','polo','collar shirt','knitwear',
    'tuxedo', 'Compression top','duffle coat', 'peacoat', 'long coat', 'trench coat',
    'biker jacket', 'blazer', 'bomber jacket', 'hooded jacket', 'leather jacket', 'military jacket', 'down jacket', 'shirt jacket',
    'suit jacket', 'dinner jacket', 'gillet', 'track jacket'
    ]
bottom_type = ['skirt', 'leggings', 'sweatpants', 'skinny pants', 'tailored pants', 'track pants', 'wide-leg pants'
    , 'cargo shorts', 'denim shorts', 'track shorts', 'compression shorts', 'cycling shorts','denim pants',
    'cargo pants', 'chino pants', 'chino shorts'
    ]
dress_type = ['casual dress', 'cocktail dress', 'evening dress', 'maxi dress', 'mini dress', 'party dress', 'sundress']
styles = ['plain','polka dot','striped','floral','checkered','zebra print','leopard print','plaid','paisley']
colors = ['blue','red','pink','orange','yellow','purple','gold','white','off white','black','grey','green','brown','beige','cream','navy','maroon']

top_list = [f"{t}, {color}, {style}" for t in top_type for style in styles for color in colors]
bottom_list =  [f"{t}, {color}, {style}" for t in bottom_type for style in styles for color in colors]
dress_list =  [f"{t}, {color}, {style}" for t in dress_type for style in styles for color in colors]
all_items = top_list + bottom_list + dress_list


clothing_type = ['top', 'bottom', 'dress']
all_types = {'top' :top_type,
    'bottom' : bottom_type,
    'dress':dress_type}
patterns_list = styles.copy()
colors_list = colors.copy()

clicks = 0
c_types = []
types = []
colors = []
patterns = []
new_files = []
out = []


clothes_click = 0
global_mask = None
mask_choice = 'Clothes'

# Define all needed functions

def find_closest(target_feature, features):
    '''
    Purpose: Find the closest embedding to the given image embedding
    Inputs: 
        target_feature (tenosr): embedding of our search item
        features (tensor): embedding of all the items in the dataset
    Outputs:
    group_sorted_indices (list): indicies of the closest items in a sorted order
    '''
    cos_similarity = features.to(torch.float32) @ target_feature.to(torch.float32).T
    group_sorted_indices = torch.argsort(cos_similarity, descending=True,dim=0).squeeze(1).cpu().tolist()
    return group_sorted_indices


def filter_function(choices):
    '''
    Purpose: Find a list of items that match the given filters
    Inputs:
        choices (list): list of filters
    Outputs:
        Upating the choices of filters
    '''
    # Import the global variables
    global clicks
    global c_types
    global types
    global colors
    global patterns
    global new_files
    new_choices = []

    # Clicks is just a reference to how far we are in the filter tree
    # We keep going down and saving the selected options until we reach the end
    # Then we add items which had the desired filters to the new_choices list
    # This is then used to filter out the items that don't match the filters in search

    if clicks == 0:
        temp_choices = [choice for choice in choices if choice in clothing_type]
        if len(temp_choices) == 0:
            temp_choices = clothing_type
        for choice in temp_choices:
            c_types.append(choice)
            new_choices.extend(list(clothes_tree[choice].keys()))

    if clicks == 1:
        temp_choices = [choice for c_type in c_types for choice in choices if choice in all_types[c_type]]
        if len(temp_choices) == 0:
            types = []
            for c_type in c_types:
                types.extend([(t,c_type) for t in clothes_tree[c_type].keys()])
        for choice in temp_choices:
            if choice in clothes_tree['top']:
                types.append((choice,'top'))
            elif choice in clothes_tree['bottom']:
                types.append((choice,'bottom'))
            else :
                types.append((choice,'dress'))
        new_choices = list(clothes_tree['top']['t-shirt'].keys())

    if clicks == 2:
        temp_choices = [choice for choice in choices if choice in colors_list]
        if len(temp_choices) == 0:
            colors = colors_list.copy()
        for choice in temp_choices:
            colors.append(choice)
        new_choices = list(clothes_tree['top']['t-shirt']['red'].keys())

    if clicks == 3:
        temp_choices = [choice for choice in choices if choice in patterns_list]
        if len(temp_choices) == 0:
            patterns = patterns_list.copy()
        for choice in temp_choices:
            patterns.append(choice)
        for type_,c_type in types:
            for color in colors:
                for pattern in patterns:
                    new_files.extend(clothes_tree[c_type][type_][color][pattern])
        clicks += 1
        new_choices = ['Press Search to use the set filter. Dont press this button']
        return gr.update(choices=new_choices, label='Press Search to use the filter or press filter to reset the filter')
    if clicks == 4:
        c_types.clear()
        types.clear()
        colors.clear()
        patterns.clear()
        new_files.clear()
        clicks = 0
        new_choices = ['top','bottom','dress']

        return gr.update(choices=new_choices,label='Select the type of clothing you want to search for')
    clicks += 1
    return gr.update(choices=new_choices)

def set_theme(theme):
    '''
    Purpose: Set the theme using filters
    Inputs:
        theme (string): theme to be set
    Outputs:
        Upadting to show the chosen theme
    '''
    global new_files
    new_files.clear()

    # Here we just manually set the filters to the desired theme
    # Then we just find images with the desired filters

    if theme == 'Red carpet':
        types = [('evening dress','dress'), ('tuxedo','top'), ('suit jacket','top'), ('dinner jacket','top'),('maxi dress','dress')]
        colors = ['red','purple','gold','white','off white','black','beige','cream','navy','maroon']
        patterns = ['plain']
    elif theme == 'Sports':
        types = [ ('track shorts','bottom'), ('track pants','bottom'), ('track jacket','top'),
            ('Compression top','top'),('cycling shorts','bottom'),('compression shorts','bottom'),('tank top','top')]
        colors = colors_list.copy()
        patterns = patterns_list.copy()#
    elif theme =='My preference':
        types = [('evening dress','dress'), ('tuxedo','top'), ('suit jacket','top'), ('dinner jacket','top'),('maxi dress','dress')]
        colors = ['red','purple','gold']
        patterns = ['plain','zebra print']
    else:
        return gr.update(label='Chosen theme: None')
    for type_,c_type in types:
        for color in colors:
            for pattern in patterns:
                new_files.extend(clothes_tree[c_type][type_][color][pattern])
    return gr.update(label='Chosen theme: '+theme)
    

def segment(img):
    '''
    Purpose: Segment the image to get the mask
    Inputs:
        img(pil image): image to be segmented
    Outputs:
        img(pil image): original image
        arr(numpy array): array of image
        pred_seg(tensor): mask
    '''

    # Get the segmentation mask then umsample it to the original size

    encoding = extractor_hg(img.convert('RGB'), return_tensors="pt")
    pixel_values = encoding.pixel_values.to(device)
    outputs = seg_hg(pixel_values=pixel_values)
    logits = outputs.logits.cpu()
    upsampled_logits = nn.functional.interpolate(
        logits,
        size=img.size[::-1],
        mode="bilinear",
        align_corners=False,
    )

    pred_seg = upsampled_logits.argmax(dim=1)[0]
    arr_img = np.array(img)
    return img, arr_img, pred_seg

def clean_img(img):
    '''
    Purpose: Clean the image to remove the chosen items
    Inputs:
        img(numpy array): image to be cleaned
    Outputs:
        img(numpy array): cleaned image
    '''

    # Here we remove pixels whihc are not in our desired class

    global global_mask
    global mask_choice
    bad = []
    mask_size = global_mask.shape
    img_size = img.shape[:2]
    if img_size != mask_size:
        return img
    if mask_choice=='Person':
        bad.append(0)
    elif mask_choice=='Clothes':
        bad.extend([0,2,15,14,13,12,11])
    elif mask_choice=='Upper Body/Dress':
        bad.extend([0,5,6,9,10,12,13,16])
    elif mask_choice=='Lower Body':
        bad.extend([0,1,2,3,4,7,8,11,14,15,16])
    elif mask_choice=='Upper Body/Dress, no person':
        bad.extend([0,1,2,15,11,14,5,6,9,10,12,13,16,3])
    for i in bad:
        global_mask[global_mask==i] = 50
    img[global_mask==50] = 255
    return img


def label_to_rec_lables (label):
    '''
    Purpose: Use the label to get the corresponding reccomendation labels
    Inputs:
        label(string): label of the image
    Outputs:
        rec_labels(list): list of reccomendation labels
    '''

    # This function is used to get the reccomendation labels to then
    # filter the reccomendation search to them

    labels = label.split(',')
    new_label = rec_dic[','.join(labels[:2])]
    print('Reccomendation label: ',new_label)
    n = 5 if len(new_label) >= 5 else len(new_label)
    labels = []
    labels = [new_label[i][0].split(',') for i in range(n)]
    chosen = []
    c_types = ['top','bottom','dress']
    for item in labels:

        label_type = item[0]
        label_color = item[1].strip()
        for c_type in c_types:
            if label_type in all_types[c_type]:
                item_type = c_type
                chosen.append([item_type,label_type,label_color])
    print('Chosen: ',chosen)
    return chosen


def filter_features(labels, rec=False, rec_items=None):
    '''
    Purpose: Filter the features to only contain the chosen label
    Inputs:
        labels(str): label string
        rec(bool): if the function is called from the recommendation function
        rec_items(list): list containing the label info
    Outputs:
        url_list(list): list of urls after filtering
        features(tensor): features after filtering
        '''
    global url_list_main
    global features_main

    # Here we filter the features to only contain the desired labels and 
    # also provide the new url list

    labels = labels.split(',')
    label_type = labels[0]
    label_color = labels[1].strip()
    c_types = ['top', 'bottom', 'dress']
    for c_type in c_types:
        if label_type in all_types[c_type]:
            item_type = c_type
    new_list = set()
    if rec:
        item_type = rec_items[0]
        label_type = rec_items[1]
        label_color = rec_items[2]
        for pattern in patterns_list:
            new_list.update(clothes_tree[item_type][label_type][label_color][pattern])
    else:
        #for color in colors_list:
        color = label_color
        for pattern in patterns_list:
            new_list.update(clothes_tree[item_type][label_type][color][pattern])
    new_files = list(new_list)
    temp_url = []
    temp_features = torch.zeros(len(new_files), 512).to(device)
    for c,i in enumerate(new_files):
        temp_url.append(url_list_main[i])
        temp_features[c] = features_main[i]
    url_list = temp_url
    features = temp_features.to(torch.float32)
    return url_list, features
    
def get_image_from_url(idx,url_list,items=5):
    '''
    Purpose: Get a list of images from the url list using the indecies
    Inputs:
        idx(list): list of indecies
        url_list(list): list of urls
        items(int): number of images to return
    Outputs:
        images(list): list of images
    '''

    # Looping until we have the desired number of images

    res = []
    i = 0
    n = 15 if len(idx) > 15 else len(idx)
    while len(res) != items and i != n:
        try:
            req = requests.get(url_list[idx[i]],stream=True,timeout=5)
            img = Image.open(req.raw).convert('RGB')
            img = np.array(img)
            res.append(img)
            i += 1
        except:
            print('Error with: ' + url_list[i])
            i += 1
            continue
    return res

def get_label(img):
    '''
    Purpose: Get the label of the image
    Inputs:
        img(numpy array or pil image): image to get label of
    Outputs:
        label(string): label of the image
    '''
    img_features = processor_hg(images=img, return_tensors="pt", padding=True).to(device)
    with torch.no_grad():
        img_features = clip_hg.get_image_features(**img_features)
    idx = find_closest(img_features,item_embeddings)[0]
    label = all_items[idx]
    return label

def resize_img(img,thresh=384):
    '''
    Purpose: Resize the image to have the largest dimension be thresh
    Inputs:
        img(pil image): image to resize
        thresh(int): threshold for the largest dimension
    Outputs:
        img(pil image): resized image
    '''
    size = img.size
    larger_dim = 0 if size[0] > size[1] else 1
    if size[larger_dim] > thresh:
        size = (int(size[0] * thresh / size[larger_dim]), int(size[1] * thresh / size[larger_dim]))
        img = img.resize(size)
    return img

def segment_function(choice):
    '''
    Purpose: Set the mask choice so that it can be called during search
    Inputs:
        choice(string): mask choice
    Outputs:
        None
    '''
    global mask_choice
    mask_choice = choice
    return gr.update(label =f'Selection: {choice}')


def rec_function(option):
    '''
    Purpose: using an image to get a reccomendation return that image and the reccomendations
    Inputs:
        option(int): option to use
    Outputs:
        rec_out(list): list of images
        temp_out(numpy array): choice image
    '''
    global out
    global url_list_main
    global features_main

    # Here we get the items which should be reccomended based on the 
    # chosen image. Then we find the closest items to the chosen image
    # out of the reccomended items. Finally we crop the images so that
    # we only see the reccomended items in the output

    if not out:
        req = requests.get(url,stream=True)
        img = np.array(Image.open(req.raw).convert('RGB'))
        rec_out = [img]*5
        return rec_out
    img = Image.fromarray(out[option])
    choice_img = resize_img(img)
    label = get_label(choice_img)
    target_labels = label_to_rec_lables(label)
    temp_out = []
    img_features = processor_hg(images=choice_img, return_tensors="pt", padding=True).to(device)
    with torch.no_grad():
        img_features = clip_hg.get_image_features(**img_features)
    n = len(target_labels)
    if n == 1:
        return_items = 5
    elif n == 2:
        return_items = 3
    elif n == 3:
        return_items = 2
    else:
        return_items = 1
    for item in target_labels:
        url_list, features = filter_features(label, rec=True, rec_items=item)
        idx = find_closest(img_features, features)[:5]
        temp_out.extend(get_image_from_url(idx,url_list,items=return_items))
    rec_out = []
    for temp_img in temp_out:
        temp_img = resize_img(Image.fromarray(temp_img))
        img, seg_img, out_mask = segment(temp_img)
     
        label_type = label.split(',')[0].strip()
        bad = []
        if label_type in top_type or label_type in dress_type:
            bad.extend([0,1,2,3,4,7,8,11,14,15,16])
        elif label_type in bottom_type:
            bad.extend([0,5,6,9,10,12,13,16])
        for i in bad:
            out_mask[out_mask==i] = 50
        img = np.array(img)
        img[out_mask==50] = 255
        h, w = img.shape[:2]
        # find the highest and lowest y-coordinates where the pixel is not white
        top = 0
        bottom = h
        for i in range(h):
            if np.all(img[i] == 255):
                top = i
            else:
                break
        for i in range(h-1, 0, -1):
            if np.all(img[i] == 255):
                bottom = i
            else:
                break
        # find the highest and lowest x-coordinates where the pixel is not white
        left = 0
        right = w
        for i in range(w):
            if np.all(img[:, i] == 255):
                left = i
            else:
                break   
        for i in range(w-1, 0, -1):
            if np.all(img[:, i] == 255):
                right = i
            else:
                break
        # crop the image
        # add 10 pixels to the top and bottom if those are not the edges of the image
        if top - 10 > 0:
            top -= 10
        if bottom  + 10 < h:
            bottom += 10
        # add 10 pixels to the left and right if those are not the edges of the image
        if left - 10 > 0:
            left -= 10
        if right + 10 < w:
            right += 10
        
        if top > bottom or right < left:
            rec_out.append(temp_img)
        else:
            temp_img = np.array(temp_img)
            img = temp_img[top:bottom, left:right]
            rec_out.append(img)
    temp_out = [choice_img]
    return rec_out, temp_out
    
def reset_values():
    '''
    Purpose: reset the values of the global variables
    Inputs:
        None
    Outputs:
        None
    '''
    global global_mask
    global out
    global mask_choice
    global clicks
    global c_types
    global types
    global colors
    global patterns
    global new_files
    global_mask = None
    out = None
    mask_choice = None
    clicks = 0
    c_types.clear()
    types.clear()
    colors.clear()
    patterns.clear()
    new_files.clear()
    return [gr.update(choices=['top','bottom','dress'],value=[]),gr.update(choices=['Person','Clothes','Upper Body/Dress','Upper Body/Dress, no person','Lower Body'],value=None)
            ,gr.update(value=None), gr.update(value=[]),gr.update(value=[]),gr.update(value=0)]

def search_function(img, text, use_choice,use_label):
    '''
    Purpose: search for images based on the text input or image input
    Inputs:
        img(pil image): image input
        text(string): text input
        use_choice(boolean): Boolen to know if to use image or text
        use_label(boolean): whether to use the label
    Outputs:
        out(list): list of images
    '''
    global new_files
    global global_mask
    global out
    use_img = False
    use_text = False
    if use_choice == 'Use Image':
        use_img = True
    elif use_choice == 'Use Text':
        use_text = True

    if new_files:
        global url_list_main
        global features_main
        temp_url = []
        new_files = list(set(new_files))
        temp_features = torch.zeros(len(new_files), 512).to(device)
        for c,i in enumerate(new_files):
            temp_url.append(url_list_main[i])
            temp_features[c] = features_main[i]
        url_list = temp_url
        features = temp_features.to(torch.float32)
    else:
        features = features_main.clone()
        url_list = url_list_main.copy()


    if use_text and not use_img:
        text_features = processor_hg(text=text, return_tensors="pt", padding=True).to(device)
        with torch.no_grad():
            text_features = clip_hg.get_text_features(**text_features)
        idx = find_closest(text_features, features)[:15]
        out = get_image_from_url(idx,url_list)
    else :
        if not isinstance(global_mask,type(None)):
            seg_img = clean_img(img)
        else:
            seg_img = img
        img = Image.fromarray(seg_img)
        label = get_label(img)
        print(label)
        if not new_files and use_label:
            url_list, features = filter_features(label)
        img_features = processor_hg(images=img, return_tensors="pt", padding=True).to(device)
        with torch.no_grad():
            img_features = clip_hg.get_image_features(**img_features)
        idx = find_closest(img_features, features)[:15]
        out = get_image_from_url(idx,url_list)
    if use_img:
        out.pop()
        out.insert(0, seg_img)
    return out

def search(img,text, choice,use_label,rotation):
    global global_mask
    try: 
        img = Image.fromarray(img).convert('RGB')
    except:
        img = Image.open(requests.get(url, stream=True).raw).convert('RGB')
    img = img.rotate(rotation)
    img = resize_img(img)
    pil, img, out_mask = segment(img)
    global_mask = out_mask
    res = search_function(img, text, choice,use_label)
    return res 

# Define the app layout

with gr.Blocks() as demo:
    gr.Markdown("Search using image segmentation")
    with gr.Tab("Search"):
        with gr.Row():
            search_image = gr.Image()
            search_input = [search_image,gr.Textbox(lines=2, label="Search Text")]
            with gr.Column():
                search_type = gr.Radio(choices=['Use Image','Use Text'],label='Select the type of search you want to perform',value='Use Image')
                use_label = gr.Checkbox(label="Use Label",value=True)
            image_output = [gr.Gallery(label='Outputs')]
            rec_out = [gr.Gallery(label='Recommendations',interactive=True)]
        with gr.Row():
            rec_selector = gr.Radio(label='Select which item you want a recommendation for',choices = [1,2,3,4],value=1)
            rec_button = gr.Button("Get Recommendation")
        with gr.Row():
            clothes_selector = gr.Radio(label='Choose a segmentation',
                choices=['Person','Clothes','Upper Body/Dress','Upper Body/Dress, no person','Lower Body'],interactive=True)
            theme_radio = gr.Radio(label='Choose a theme',choices=['None','Red carpet','Sports'],interactive=True)
            rotation_radio = gr.Radio(label='Choose a rotation',choices=[0,90,180,270],interactive=True,value=0)
        with gr.Row():
            filter_checkbox = gr.CheckboxGroup(label='Choose the clothing types', choices=['top','bottom','dress'],interactive=True,value=['top'])
            filter_button = gr.Button("Filter Button")
        search_button = gr.Button("Search Button")

    clothes_selector.change(segment_function,inputs=[clothes_selector],outputs=clothes_selector)
    search_image.change(reset_values, inputs=None, outputs=[filter_checkbox,clothes_selector,theme_radio,image_output[0],rec_out[0],rotation_radio])
    theme_radio.change(set_theme, inputs=theme_radio, outputs=theme_radio)
    rec_button.click(rec_function, inputs=rec_selector, outputs=[rec_out[0],image_output[0]])
    filter_button.click(filter_function, inputs=filter_checkbox, outputs=filter_checkbox)
    search_button.click(search, inputs=search_input+[search_type,use_label,rotation_radio], outputs=image_output)

demo.launch(share=False)