|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
import torch |
|
import time |
|
from diffusers import DiffusionPipeline, AutoencoderTiny |
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
from custom_pipeline import FluxWithCFGPipeline |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
DEFAULT_WIDTH = 1024 |
|
DEFAULT_HEIGHT = 1024 |
|
DEFAULT_INFERENCE_STEPS = 1 |
|
|
|
|
|
dtype = torch.float16 |
|
pipe = FluxWithCFGPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype |
|
) |
|
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) |
|
pipe.to("cuda") |
|
pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better") |
|
pipe.set_adapters(["better"], adapter_weights=[1.0]) |
|
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) |
|
pipe.unload_lora_weights() |
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
@spaces.GPU(duration=25) |
|
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(int(float(seed))) |
|
|
|
start_time = time.time() |
|
|
|
|
|
img = pipe.generate_images( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator |
|
) |
|
latency = f"Latency: {(time.time()-start_time):.2f} seconds" |
|
return img, seed, latency |
|
|
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cute white cat holding a sign that says hello world", |
|
"an anime illustration of Steve Jobs", |
|
"Create image of Modern house in minecraft style", |
|
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", |
|
|
|
] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(elem_id="app-container"): |
|
gr.Markdown("# 🎨 FLUX модель генерации изображений") |
|
gr.Markdown("Генерирует изображения в реальном времени") |
|
gr.Markdown("<span style='color: red;'>Внимание: запросы к модели лучше делать на английском языке (можно пользоваться переводчиком). Поддержка русского языка будет добавлена позднее.</span>") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2.5): |
|
result = gr.Image(label="Generated Image", show_label=False, interactive=False) |
|
with gr.Column(scale=1): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
placeholder="Опишите желаемое изображение (на английском языке)...", |
|
lines=3, |
|
show_label=False, |
|
container=False, |
|
) |
|
generateBtn = gr.Button("🖼️ Сгенерировать изображение") |
|
enhanceBtn = gr.Button("🚀 Усилить изображение") |
|
|
|
with gr.Column("Advanced Options"): |
|
with gr.Row(): |
|
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False) |
|
latency = gr.Text(label="Latency") |
|
with gr.Row(): |
|
seed = gr.Number(label="Seed", value=42) |
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) |
|
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) |
|
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS) |
|
|
|
with gr.Row(): |
|
gr.Markdown("### 🌟 Inspiration Gallery") |
|
with gr.Row(): |
|
gr.Examples( |
|
examples=examples, |
|
fn=generate_image, |
|
inputs=[prompt], |
|
outputs=[result, seed, latency], |
|
cache_examples="lazy" |
|
) |
|
|
|
enhanceBtn.click( |
|
fn=generate_image, |
|
inputs=[prompt, seed, width, height], |
|
outputs=[result, seed, latency], |
|
show_progress="full", |
|
queue=False, |
|
concurrency_limit=None |
|
) |
|
|
|
generateBtn.click( |
|
fn=generate_image, |
|
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], |
|
outputs=[result, seed, latency], |
|
show_progress="full", |
|
api_name="RealtimeFlux", |
|
queue=False |
|
) |
|
|
|
def update_ui(realtime_enabled): |
|
return { |
|
prompt: gr.update(interactive=True), |
|
generateBtn: gr.update(visible=not realtime_enabled) |
|
} |
|
|
|
realtime.change( |
|
fn=update_ui, |
|
inputs=[realtime], |
|
outputs=[prompt, generateBtn], |
|
queue=False, |
|
concurrency_limit=None |
|
) |
|
|
|
def realtime_generation(*args): |
|
if args[0]: |
|
return next(generate_image(*args[1:])) |
|
|
|
prompt.submit( |
|
fn=generate_image, |
|
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], |
|
outputs=[result, seed, latency], |
|
show_progress="full", |
|
queue=False, |
|
concurrency_limit=None |
|
) |
|
|
|
for component in [prompt, width, height, num_inference_steps]: |
|
component.input( |
|
fn=realtime_generation, |
|
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps], |
|
outputs=[result, seed, latency], |
|
show_progress="hidden", |
|
trigger_mode="always_last", |
|
queue=False, |
|
concurrency_limit=None |
|
) |
|
|
|
|
|
demo.launch() |
|
|