Update custom_pipeline.py
Browse files- custom_pipeline.py +160 -146
custom_pipeline.py
CHANGED
@@ -1,151 +1,165 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
if timesteps is not None and sigmas is not None:
|
31 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
|
32 |
-
|
33 |
-
if timesteps is not None:
|
34 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device)
|
35 |
-
elif sigmas is not None:
|
36 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device)
|
37 |
-
else:
|
38 |
-
scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)
|
39 |
-
|
40 |
-
timesteps = scheduler.timesteps
|
41 |
-
num_inference_steps = len(timesteps)
|
42 |
-
return timesteps, num_inference_steps
|
43 |
-
|
44 |
-
# FLUX pipeline function
|
45 |
-
class HighSpeedFluxPipeline(FluxPipeline):
|
46 |
-
"""
|
47 |
-
Extends the FluxPipeline to yield intermediate images during the denoising process
|
48 |
-
with progressively increasing resolution for faster generation.
|
49 |
-
"""
|
50 |
-
@torch.inference_mode()
|
51 |
-
def generate_images(
|
52 |
-
self,
|
53 |
-
prompt: Union[str, List[str]] = None,
|
54 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
55 |
-
height: Optional[int] = None,
|
56 |
-
width: Optional[int] = None,
|
57 |
-
num_inference_steps: int = 4,
|
58 |
-
timesteps: List[int] = None,
|
59 |
-
num_images_per_prompt: Optional[int] = 1,
|
60 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
61 |
-
latents: Optional[torch.FloatTensor] = None,
|
62 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
63 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
64 |
-
output_type: Optional[str] = "pil",
|
65 |
-
return_dict: bool = True,
|
66 |
-
max_sequence_length: int = 128,
|
67 |
-
):
|
68 |
-
"""Generates images and yields intermediate results during the denoising process."""
|
69 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
70 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
71 |
-
|
72 |
-
# 1. Check inputs
|
73 |
-
self.check_inputs(
|
74 |
-
prompt,
|
75 |
-
prompt_2,
|
76 |
-
height,
|
77 |
-
width,
|
78 |
-
prompt_embeds=prompt_embeds,
|
79 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
80 |
-
max_sequence_length=max_sequence_length,
|
81 |
-
)
|
82 |
|
83 |
-
|
84 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
85 |
-
device = self._execution_device
|
86 |
|
87 |
-
|
|
|
88 |
prompt=prompt,
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
)
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
for i, t in enumerate(timesteps):
|
124 |
-
|
125 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
126 |
-
|
127 |
-
noise_pred = self.transformer(
|
128 |
-
hidden_states=latents,
|
129 |
-
timestep=timestep / 1000,
|
130 |
-
pooled_projections=pooled_prompt_embeds,
|
131 |
-
encoder_hidden_states=prompt_embeds,
|
132 |
-
txt_ids=text_ids,
|
133 |
-
img_ids=latent_image_ids,
|
134 |
-
return_dict=False,
|
135 |
-
)[0]
|
136 |
-
|
137 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
138 |
-
torch.cuda.empty_cache()
|
139 |
-
|
140 |
-
# Final image
|
141 |
-
return self._decode_latents_to_image(latents, height, width, output_type)
|
142 |
-
self.maybe_free_model_hooks()
|
143 |
-
torch.cuda.empty_cache()
|
144 |
-
|
145 |
-
def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
|
146 |
-
"""Decodes the given latents into an image."""
|
147 |
-
vae = vae or self.vae
|
148 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
149 |
-
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
|
150 |
-
image = vae.decode(latents, return_dict=False)[0]
|
151 |
-
return self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
|
1 |
+
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
|
9 |
+
|
10 |
+
# Constants
|
11 |
+
MAX_SEED = np.iinfo(np.int32).max
|
12 |
+
MAX_IMAGE_SIZE = 2048
|
13 |
+
DEFAULT_WIDTH = 1024
|
14 |
+
DEFAULT_HEIGHT = 1024
|
15 |
+
DEFAULT_INFERENCE_STEPS = 1
|
16 |
+
|
17 |
+
# Device and model setup
|
18 |
+
dtype = torch.float16
|
19 |
+
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
|
20 |
+
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
21 |
+
).to("cuda")
|
22 |
+
torch.cuda.empty_cache()
|
23 |
+
|
24 |
+
# Inference function
|
25 |
+
@spaces.GPU(duration=25)
|
26 |
+
def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
|
27 |
+
if randomize_seed:
|
28 |
+
seed = random.randint(0, MAX_SEED)
|
29 |
+
generator = torch.Generator().manual_seed(int(float(seed)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
start_time = time.time()
|
|
|
|
|
32 |
|
33 |
+
# Only generate the last image in the sequence
|
34 |
+
for img in pipe.generate_images(
|
35 |
prompt=prompt,
|
36 |
+
guidance_scale=0, # as Flux schnell is guidance free
|
37 |
+
num_inference_steps=num_inference_steps,
|
38 |
+
width=width,
|
39 |
+
height=height,
|
40 |
+
generator=generator
|
41 |
+
):
|
42 |
+
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
43 |
+
yield img, seed, latency
|
44 |
+
|
45 |
+
# Example prompts
|
46 |
+
examples = [
|
47 |
+
"a tiny astronaut hatching from an egg on the moon",
|
48 |
+
"a cute white cat holding a sign that says hello world",
|
49 |
+
"an anime illustration of a wiener schnitzel",
|
50 |
+
"Create mage of Modern house in minecraft style",
|
51 |
+
"Imagine steve jobs as Star Wars movie character",
|
52 |
+
"Lion",
|
53 |
+
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
|
54 |
+
]
|
55 |
+
|
56 |
+
# --- Gradio UI ---
|
57 |
+
with gr.Blocks() as demo:
|
58 |
+
with gr.Column(elem_id="app-container"):
|
59 |
+
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
|
60 |
+
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
|
61 |
+
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
with gr.Column(scale=3):
|
65 |
+
result = gr.Image(label="Generated Image", show_label=False, interactive=False)
|
66 |
+
with gr.Column(scale=1):
|
67 |
+
prompt = gr.Text(
|
68 |
+
label="Prompt",
|
69 |
+
placeholder="Describe the image you want to generate...",
|
70 |
+
lines=3,
|
71 |
+
show_label=False,
|
72 |
+
container=False,
|
73 |
+
)
|
74 |
+
generateBtn = gr.Button("🖼️ Generate Image")
|
75 |
+
enhanceBtn = gr.Button("🚀 Enhance Image")
|
76 |
+
|
77 |
+
with gr.Column("Advanced Options"):
|
78 |
+
with gr.Row():
|
79 |
+
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
|
80 |
+
latency = gr.Text(label="Latency")
|
81 |
+
with gr.Row():
|
82 |
+
seed = gr.Number(label="Seed", value=42)
|
83 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
|
84 |
+
with gr.Row():
|
85 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
|
86 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
|
87 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
gr.Markdown("### 🌟 Inspiration Gallery")
|
91 |
+
with gr.Row():
|
92 |
+
gr.Examples(
|
93 |
+
examples=examples,
|
94 |
+
fn=generate_image,
|
95 |
+
inputs=[prompt],
|
96 |
+
outputs=[result, seed, latency],
|
97 |
+
cache_examples="lazy"
|
98 |
+
)
|
99 |
+
|
100 |
+
def enhance_image(*args):
|
101 |
+
gr.Info("Enhancing Image") # currently just runs optimized pipeline for 2 steps. Further implementations later.
|
102 |
+
return next(generate_image(*args))
|
103 |
+
|
104 |
+
enhanceBtn.click(
|
105 |
+
fn=enhance_image,
|
106 |
+
inputs=[prompt, seed, width, height],
|
107 |
+
outputs=[result, seed, latency],
|
108 |
+
show_progress="hidden",
|
109 |
+
api_name=False,
|
110 |
+
queue=False,
|
111 |
+
concurrency_limit=None
|
112 |
+
)
|
113 |
+
|
114 |
+
generateBtn.click(
|
115 |
+
fn=generate_image,
|
116 |
+
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
|
117 |
+
outputs=[result, seed, latency],
|
118 |
+
show_progress="full",
|
119 |
+
api_name="RealtimeFlux",
|
120 |
+
queue=False,
|
121 |
+
concurrency_limit=None
|
122 |
+
)
|
123 |
+
|
124 |
+
def update_ui(realtime_enabled):
|
125 |
+
return {
|
126 |
+
prompt: gr.update(interactive=True),
|
127 |
+
generateBtn: gr.update(visible=not realtime_enabled)
|
128 |
+
}
|
129 |
+
|
130 |
+
realtime.change(
|
131 |
+
fn=update_ui,
|
132 |
+
inputs=[realtime],
|
133 |
+
outputs=[prompt, generateBtn],
|
134 |
+
queue=False,
|
135 |
+
concurrency_limit=None
|
136 |
+
)
|
137 |
+
|
138 |
+
def realtime_generation(*args):
|
139 |
+
if args[0]: # If realtime is enabled
|
140 |
+
return next(generate_image(*args[1:]))
|
141 |
+
|
142 |
+
prompt.submit(
|
143 |
+
fn=generate_image,
|
144 |
+
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
|
145 |
+
outputs=[result, seed, latency],
|
146 |
+
show_progress="full",
|
147 |
+
api_name=False,
|
148 |
+
queue=False,
|
149 |
+
concurrency_limit=None
|
150 |
+
)
|
151 |
+
|
152 |
+
for component in [prompt, width, height, num_inference_steps]:
|
153 |
+
component.input(
|
154 |
+
fn=realtime_generation,
|
155 |
+
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
|
156 |
+
outputs=[result, seed, latency],
|
157 |
+
show_progress="hidden",
|
158 |
+
api_name=False,
|
159 |
+
trigger_mode="always_last",
|
160 |
+
queue=False,
|
161 |
+
concurrency_limit=None
|
162 |
)
|
163 |
+
|
164 |
+
# Launch the app
|
165 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|