Full code
Browse files- README.md +9 -7
- app.py +117 -4
- custom_pipeline.py +168 -0
- requirements.txt +7 -0
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
---
|
2 |
-
title: Realtime
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: FLUX Realtime
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: mit
|
11 |
+
short_description: High quality Images in Realtime
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,7 +1,120 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
|
9 |
|
10 |
+
# Constants
|
11 |
+
MAX_SEED = np.iinfo(np.int32).max
|
12 |
+
MAX_IMAGE_SIZE = 2048
|
13 |
+
DEFAULT_WIDTH = 1024
|
14 |
+
DEFAULT_HEIGHT = 1024
|
15 |
+
DEFAULT_INFERENCE_STEPS = 1
|
16 |
|
17 |
+
# Device and model setup
|
18 |
+
dtype = torch.float16
|
19 |
+
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
|
20 |
+
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
21 |
+
).to("cuda")
|
22 |
+
torch.cuda.empty_cache()
|
23 |
+
|
24 |
+
# Inference function
|
25 |
+
@spaces.GPU(duration=25)
|
26 |
+
def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=DEFAULT_INFERENCE_STEPS):
|
27 |
+
|
28 |
+
if randomize_seed:
|
29 |
+
seed = random.randint(0, MAX_SEED)
|
30 |
+
generator = torch.Generator().manual_seed(seed)
|
31 |
+
|
32 |
+
start_time = time.time()
|
33 |
+
|
34 |
+
# Only generate the last image in the sequence
|
35 |
+
for img in pipe.generate_images(
|
36 |
+
prompt=prompt,
|
37 |
+
guidance_scale=0,
|
38 |
+
num_inference_steps=num_inference_steps,
|
39 |
+
width=width,
|
40 |
+
height=height,
|
41 |
+
generator=generator
|
42 |
+
):
|
43 |
+
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
44 |
+
yield img, seed, latency
|
45 |
+
|
46 |
+
|
47 |
+
# Example prompts
|
48 |
+
examples = [
|
49 |
+
"a tiny astronaut hatching from an egg on the moon",
|
50 |
+
"a cat holding a sign that says hello world",
|
51 |
+
"an anime illustration of a wiener schnitzel",
|
52 |
+
"a futuristic cityscape with flying cars and neon lights",
|
53 |
+
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
|
54 |
+
"Imagine steve jobs as Star Wars movie character"
|
55 |
+
]
|
56 |
+
|
57 |
+
# --- Gradio UI ---
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
with gr.Column(elem_id="app-container"):
|
60 |
+
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
|
61 |
+
gr.Markdown("Generate stunning images in real-time with advanced AI technology.")
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
with gr.Column(scale=3):
|
65 |
+
result = gr.Image(label="Generated Image", show_label=False, interactive=False)
|
66 |
+
with gr.Column(scale=1):
|
67 |
+
prompt = gr.Text(
|
68 |
+
label="Prompt",
|
69 |
+
placeholder="Describe the image you want to generate...",
|
70 |
+
lines=3,
|
71 |
+
show_label=False,
|
72 |
+
container=False,
|
73 |
+
)
|
74 |
+
enhanceBtn = gr.Button("🚀 Enhance Image")
|
75 |
+
|
76 |
+
with gr.Column("Advanced Options"):
|
77 |
+
with gr.Row():
|
78 |
+
latency = gr.Text(show_label=False)
|
79 |
+
with gr.Row():
|
80 |
+
seed = gr.Number(label="Seed", value=42, precision=0)
|
81 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
|
82 |
+
with gr.Row():
|
83 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
|
84 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
|
85 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
|
86 |
+
|
87 |
+
with gr.Row():
|
88 |
+
gr.Markdown("### 🌟 Inspiration Gallery")
|
89 |
+
with gr.Row():
|
90 |
+
gr.Examples(
|
91 |
+
examples=examples,
|
92 |
+
fn=generate_image,
|
93 |
+
inputs=[prompt],
|
94 |
+
outputs=[result, seed],
|
95 |
+
cache_examples="lazy"
|
96 |
+
)
|
97 |
+
|
98 |
+
# Event handling - Trigger image generation on button click or input change
|
99 |
+
enhanceBtn.click(
|
100 |
+
fn=generate_image,
|
101 |
+
inputs=[prompt, seed, width, height],
|
102 |
+
outputs=[result, seed, latency],
|
103 |
+
show_progress="hidden",
|
104 |
+
show_api=False,
|
105 |
+
queue=False
|
106 |
+
)
|
107 |
+
|
108 |
+
gr.on(
|
109 |
+
triggers=[prompt.input, width.input, height.input, num_inference_steps.input],
|
110 |
+
fn=generate_image,
|
111 |
+
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
|
112 |
+
outputs=[result, seed, latency],
|
113 |
+
show_progress="hidden",
|
114 |
+
show_api=False,
|
115 |
+
trigger_mode="always_last",
|
116 |
+
queue=False
|
117 |
+
)
|
118 |
+
|
119 |
+
# Launch the app
|
120 |
+
demo.launch()
|
custom_pipeline.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
|
4 |
+
from typing import Any, Dict, List, Optional, Union
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Constants for shift calculation
|
8 |
+
BASE_SEQ_LEN = 256
|
9 |
+
MAX_SEQ_LEN = 4096
|
10 |
+
BASE_SHIFT = 0.5
|
11 |
+
MAX_SHIFT = 1.2
|
12 |
+
|
13 |
+
# Helper functions
|
14 |
+
def calculate_timestep_shift(image_seq_len: int) -> float:
|
15 |
+
"""Calculates the timestep shift (mu) based on the image sequence length."""
|
16 |
+
m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN)
|
17 |
+
b = BASE_SHIFT - m * BASE_SEQ_LEN
|
18 |
+
mu = image_seq_len * m + b
|
19 |
+
return mu
|
20 |
+
|
21 |
+
def prepare_timesteps(
|
22 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
23 |
+
num_inference_steps: Optional[int] = None,
|
24 |
+
device: Optional[Union[str, torch.device]] = None,
|
25 |
+
timesteps: Optional[List[int]] = None,
|
26 |
+
sigmas: Optional[List[float]] = None,
|
27 |
+
mu: Optional[float] = None,
|
28 |
+
) -> (torch.Tensor, int):
|
29 |
+
"""Prepares the timesteps for the diffusion process."""
|
30 |
+
if timesteps is not None and sigmas is not None:
|
31 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
|
32 |
+
|
33 |
+
if timesteps is not None:
|
34 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device)
|
35 |
+
elif sigmas is not None:
|
36 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device)
|
37 |
+
else:
|
38 |
+
scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)
|
39 |
+
|
40 |
+
timesteps = scheduler.timesteps
|
41 |
+
num_inference_steps = len(timesteps)
|
42 |
+
return timesteps, num_inference_steps
|
43 |
+
|
44 |
+
# FLUX pipeline function
|
45 |
+
class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
46 |
+
"""
|
47 |
+
Extends the FluxPipeline to yield intermediate images during the denoising process
|
48 |
+
with progressively increasing resolution for faster generation.
|
49 |
+
"""
|
50 |
+
@torch.inference_mode()
|
51 |
+
def generate_images(
|
52 |
+
self,
|
53 |
+
prompt: Union[str, List[str]] = None,
|
54 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
55 |
+
height: Optional[int] = None,
|
56 |
+
width: Optional[int] = None,
|
57 |
+
num_inference_steps: int = 4,
|
58 |
+
timesteps: List[int] = None,
|
59 |
+
guidance_scale: float = 3.5,
|
60 |
+
num_images_per_prompt: Optional[int] = 1,
|
61 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
62 |
+
latents: Optional[torch.FloatTensor] = None,
|
63 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
64 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
65 |
+
output_type: Optional[str] = "pil",
|
66 |
+
return_dict: bool = True,
|
67 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
68 |
+
max_sequence_length: int = 300,
|
69 |
+
):
|
70 |
+
"""Generates images and yields intermediate results during the denoising process."""
|
71 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
72 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
73 |
+
|
74 |
+
# 1. Check inputs
|
75 |
+
self.check_inputs(
|
76 |
+
prompt,
|
77 |
+
prompt_2,
|
78 |
+
height,
|
79 |
+
width,
|
80 |
+
prompt_embeds=prompt_embeds,
|
81 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
82 |
+
max_sequence_length=max_sequence_length,
|
83 |
+
)
|
84 |
+
|
85 |
+
self._guidance_scale = guidance_scale
|
86 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
87 |
+
self._interrupt = False
|
88 |
+
|
89 |
+
# 2. Define call parameters
|
90 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
91 |
+
device = self._execution_device
|
92 |
+
|
93 |
+
# 3. Encode prompt
|
94 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
95 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
96 |
+
prompt=prompt,
|
97 |
+
prompt_2=prompt_2,
|
98 |
+
prompt_embeds=prompt_embeds,
|
99 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
100 |
+
device=device,
|
101 |
+
num_images_per_prompt=num_images_per_prompt,
|
102 |
+
max_sequence_length=max_sequence_length,
|
103 |
+
lora_scale=lora_scale,
|
104 |
+
)
|
105 |
+
# 4. Prepare latent variables
|
106 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
107 |
+
latents, latent_image_ids = self.prepare_latents(
|
108 |
+
batch_size * num_images_per_prompt,
|
109 |
+
num_channels_latents,
|
110 |
+
height,
|
111 |
+
width,
|
112 |
+
prompt_embeds.dtype,
|
113 |
+
device,
|
114 |
+
generator,
|
115 |
+
latents,
|
116 |
+
)
|
117 |
+
# 5. Prepare timesteps
|
118 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
119 |
+
image_seq_len = latents.shape[1]
|
120 |
+
mu = calculate_timestep_shift(image_seq_len)
|
121 |
+
timesteps, num_inference_steps = prepare_timesteps(
|
122 |
+
self.scheduler,
|
123 |
+
num_inference_steps,
|
124 |
+
device,
|
125 |
+
timesteps,
|
126 |
+
sigmas,
|
127 |
+
mu=mu,
|
128 |
+
)
|
129 |
+
self._num_timesteps = len(timesteps)
|
130 |
+
|
131 |
+
# Handle guidance
|
132 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
133 |
+
|
134 |
+
# 6. Denoising loop
|
135 |
+
for i, t in enumerate(timesteps):
|
136 |
+
if self.interrupt:
|
137 |
+
continue
|
138 |
+
|
139 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
140 |
+
|
141 |
+
noise_pred = self.transformer(
|
142 |
+
hidden_states=latents,
|
143 |
+
timestep=timestep / 1000,
|
144 |
+
guidance=guidance,
|
145 |
+
pooled_projections=pooled_prompt_embeds,
|
146 |
+
encoder_hidden_states=prompt_embeds,
|
147 |
+
txt_ids=text_ids,
|
148 |
+
img_ids=latent_image_ids,
|
149 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
150 |
+
return_dict=False,
|
151 |
+
)[0]
|
152 |
+
|
153 |
+
# Yield intermediate result
|
154 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
155 |
+
yield self._decode_latents_to_image(latents, height, width, output_type)
|
156 |
+
torch.cuda.empty_cache()
|
157 |
+
|
158 |
+
# Final image
|
159 |
+
self.maybe_free_model_hooks()
|
160 |
+
torch.cuda.empty_cache()
|
161 |
+
|
162 |
+
def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
|
163 |
+
"""Decodes the given latents into an image."""
|
164 |
+
vae = vae or self.vae
|
165 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
166 |
+
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
|
167 |
+
image = vae.decode(latents, return_dict=False)[0]
|
168 |
+
return self.image_processor.postprocess(image, output_type=output_type)[0]
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
git+https://github.com/huggingface/diffusers.git
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
transformers
|
6 |
+
xformers
|
7 |
+
sentencepiece
|