File size: 5,612 Bytes
f847e34
6ccbc82
 
 
 
 
 
 
 
ed82d99
349f9d0
e91ad46
 
 
 
 
6ccbc82
e91ad46
6ccbc82
e91ad46
 
 
 
 
 
 
 
 
 
6ccbc82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91ad46
6ccbc82
 
349f9d0
 
6ccbc82
 
 
 
 
 
 
349f9d0
6ccbc82
 
e91ad46
 
 
 
 
349f9d0
e91ad46
7a816d6
e91ad46
7a816d6
e91ad46
 
 
 
86dab64
 
e91ad46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c07c98
f847e34
6ccbc82
e91ad46
6ccbc82
 
349f9d0
4c07c98
349f9d0
e91ad46
 
349f9d0
e91ad46
6ccbc82
c6be856
e91ad46
 
349f9d0
c6be856
19a104d
86dab64
 
 
 
 
 
 
 
e91ad46
6ccbc82
349f9d0
 
 
 
 
e91ad46
 
349f9d0
 
 
 
 
 
e91ad46
349f9d0
ed82d99
1ea5759
349f9d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub
from htmlTemplates import css, bot_template, user_template
from streamlit_chat import message
import os
from docx import Document
import requests
from requests.auth import HTTPBasicAuth

def get_uploaded_text(uploadedFiles):
    text = ""
    for uploadedFile in uploadedFiles:
        file_extension = os.path.splitext(uploadedFile.name)[1]
        if(file_extension == '.pdf'):
            pdf_reader = PdfReader(uploadedFile)
            for page in pdf_reader.pages:
                text += page.extract_text()
        elif(file_extension == '.docx'):
            doc = Document(uploadedFile)
            for para in doc.paragraphs:
                text += para.text
    return text

def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks

def get_vectorstore(text_chunks):
    embeddings = OpenAIEmbeddings()
    # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore

def get_conversation_chain(vectorstore):
    llm = ChatOpenAI(temperature=0.3)
    # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})

    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain

def handle_userinput(user_question, myslot):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']
    indexed = response['answer'].find("don't have") != -1 or response['answer'].find("don't know") != -1
    if response and response['answer'] and indexed:
        st.session_state.sr = 0
    else:
        st.session_state.sr = 1
    with myslot.container():
        for i, msg in enumerate(st.session_state.chat_history):
            if i % 2 == 0:
                message(msg.content, is_user=True) 
            else:
                message(msg.content)

def create_jira_ticket(summary, description, project_key, issuetype_name):
    url = "https://tnq.atlassian.net/rest/api/3/issue"
    token = ""
    auth = HTTPBasicAuth("", token)

    headers = {
       "Accept": "application/json",
       "Content-Type": "application/json"
    }

    payload = {
        "fields": {
            "project":
            {
                "key": project_key
            },
            "summary": summary,
            "customfield_10044": [{"value": "Edit Central All"}],
            "description": {
                "type": "doc",
                "version": 1,
                "content": [
                    {
                        "type": "paragraph",
                        "content": [
                            {
                                "type": "text",
                                "text": "Creating of an issue using project keys and issue type names using the REST API"
                            }
                        ]
                    }
                ]
            },
            "issuetype": {
                "name": issuetype_name
            }
        }
    }

    response = requests.post(
        url, json=payload, headers=headers, auth=auth
    )

    return response.json()


def main():
    load_dotenv()
    st.set_page_config(page_title="AIusBOT", page_icon=":alien:")

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None
    if "sr" not in st.session_state:
        st.session_state.sr = 1

    st.header("AIusBOT :alien:")

    myslot = st.empty()

    user_question = st.text_input("Ask a question?")
    if user_question:
        handle_userinput(user_question, myslot)

#    if st.button("Create SR?", disabled=st.session_state.sr, type="primary"):
#        jira_response = create_jira_ticket(
#            summary=user_question,
#            description=f"User question that did not receive a satisfactory answer: {user_question}",
#            project_key="EC",
#            issuetype_name="Task"
#        )
#        st.write(f"Ticket created: {jira_response.get('key')}")

    with st.sidebar:
        st.subheader("Your support Documents")
        pdf_docs = st.file_uploader(
            "Upload your Documents here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Uploading the docs"):

                raw_text = get_uploaded_text(pdf_docs)

                text_chunks = get_text_chunks(raw_text)
                
                vectorstore = get_vectorstore(text_chunks)

                st.session_state.conversation = get_conversation_chain(vectorstore)
                st.toast("File Process Completed", icon='🎉')


if __name__ == '__main__':
    main()