Spaces:
Sleeping
Sleeping
File size: 2,766 Bytes
ad89062 71f24d2 ad89062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain.prompts import (
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder
)
import streamlit as st
from streamlit_chat import message
from utils import *
import os
from dotenv import load_dotenv
# Load environment variables from the .env file
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if OPENAI_API_KEY is None:
raise ValueError("OpenAI API key is not found in the .env file")
st.subheader("Article Chatbot")
if 'responses' not in st.session_state:
st.session_state['responses'] = ["How can I assist you?"]
if 'requests' not in st.session_state:
st.session_state['requests'] = []
llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
if 'buffer_memory' not in st.session_state:
st.session_state.buffer_memory=ConversationBufferWindowMemory(k=3,return_messages=True)
system_msg_template = SystemMessagePromptTemplate.from_template(template="""Answer the question as truthfully as possible using the provided context,
and if the answer is not contained within the text below, say 'I don't know'""")
human_msg_template = HumanMessagePromptTemplate.from_template(template="{input}")
prompt_template = ChatPromptTemplate.from_messages([system_msg_template, MessagesPlaceholder(variable_name="history"), human_msg_template])
conversation = ConversationChain(memory=st.session_state.buffer_memory, prompt=prompt_template, llm=llm, verbose=True)
# container for chat history
response_container = st.container()
# container for text box
textcontainer = st.container()
with textcontainer:
query = st.text_input("Query: ", key="input")
if query:
with st.spinner("typing..."):
conversation_string = get_conversation_string()
# st.code(conversation_string)
refined_query = query_refiner(conversation_string, query)
st.subheader("Refined Query:")
st.write(refined_query)
context = find_match(refined_query)
# print(context)
response = conversation.predict(input=f"Context:\n {context} \n\n Query:\n{query}")
st.session_state.requests.append(query)
st.session_state.responses.append(response)
with response_container:
if st.session_state['responses']:
for i in range(len(st.session_state['responses'])):
message(st.session_state['responses'][i],key=str(i))
if i < len(st.session_state['requests']):
message(st.session_state["requests"][i], is_user=True,key=str(i)+ '_user') |