from tempfile import NamedTemporaryFile from langchain.agents import create_csv_agent from langchain.llms import OpenAI from dotenv import load_dotenv import os import streamlit as st import pandas as pd from streamlit_chat import message from langchain.embeddings.openai import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders.csv_loader import CSVLoader from langchain.vectorstores import FAISS def main(): load_dotenv() # Load the OpenAI API key from the environment variable api_key = os.getenv("OPENAI_API_KEY") if api_key is None or api_key == "": st.error("OPENAI_API_KEY is not set") return st.set_page_config(page_title="Insightly") st.sidebar.image("https://ibb.co/6wG304q", use_column_width=True) st.header("Data Analysis 📈") csv_files = st.file_uploader("Upload CSV files", type="csv", accept_multiple_files=True) if csv_files: llm = OpenAI(temperature=0) user_input = st.text_input("Question here:") # Iterate over each CSV file for csv_file in csv_files: with NamedTemporaryFile(delete=False) as f: f.write(csv_file.getvalue()) f.flush() df = pd.read_csv(f.name) # Perform any necessary data preprocessing or feature engineering here # You can modify the code based on your specific requirements # Example: Accessing columns from the DataFrame # column_data = df["column_name"] # Example: Applying transformations or calculations to the data # transformed_data = column_data.apply(lambda x: x * 2) # Example: Using the preprocessed data with the OpenAI API # llm_response = llm.predict(transformed_data) if user_input: # Pass the user input to the OpenAI agent for processing agent = create_csv_agent(llm, f.name, verbose=True) response = agent.run(user_input) st.write(f"CSV File: {csv_file.name}") st.write("Response:") st.write(response) if __name__ == "__main__": main()