Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ def main():
|
|
19 |
return
|
20 |
|
21 |
st.sidebar.image("https://i.ibb.co/bX6GdqG/insightly-wbg.png", use_column_width=True)
|
22 |
-
st.title("
|
23 |
|
24 |
csv_files = st.file_uploader("Upload CSV files", type="csv", accept_multiple_files=True)
|
25 |
if csv_files:
|
@@ -53,17 +53,19 @@ def main():
|
|
53 |
st.error(f"The column '{column_for_prompt}' does not exist in the CSV file: {csv_file.name}")
|
54 |
continue
|
55 |
|
56 |
-
|
57 |
-
# You can modify the code based on your specific requirements
|
58 |
|
59 |
# Example: Accessing columns from the DataFrame
|
60 |
column_data = df[column_for_prompt]
|
61 |
|
62 |
# Loop through each row in the specified column and pass the user input as prompt
|
63 |
for row_value in column_data:
|
64 |
-
|
|
|
|
|
|
|
65 |
# Example: Using the preprocessed data with the OpenAI API
|
66 |
-
llm_response = llm.predict(
|
67 |
responses_list.append(llm_response)
|
68 |
|
69 |
# Introduce a delay of 1 second between API calls to reduce the rate of requests
|
@@ -75,10 +77,14 @@ def main():
|
|
75 |
"Responses": responses_list
|
76 |
})
|
77 |
|
|
|
|
|
|
|
78 |
# Offer the option to download the responses as a CSV file
|
79 |
if st.button("Download Responses as CSV"):
|
80 |
with BytesIO() as output_file:
|
81 |
response_df.to_csv(output_file, index=False)
|
|
|
82 |
st.download_button(
|
83 |
label="Download CSV",
|
84 |
data=output_file.getvalue(),
|
@@ -87,4 +93,4 @@ def main():
|
|
87 |
)
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
-
main()
|
|
|
19 |
return
|
20 |
|
21 |
st.sidebar.image("https://i.ibb.co/bX6GdqG/insightly-wbg.png", use_column_width=True)
|
22 |
+
st.title("Column Analysis 💬")
|
23 |
|
24 |
csv_files = st.file_uploader("Upload CSV files", type="csv", accept_multiple_files=True)
|
25 |
if csv_files:
|
|
|
53 |
st.error(f"The column '{column_for_prompt}' does not exist in the CSV file: {csv_file.name}")
|
54 |
continue
|
55 |
|
56 |
+
|
|
|
57 |
|
58 |
# Example: Accessing columns from the DataFrame
|
59 |
column_data = df[column_for_prompt]
|
60 |
|
61 |
# Loop through each row in the specified column and pass the user input as prompt
|
62 |
for row_value in column_data:
|
63 |
+
# Convert the row value to a string to handle missing or NaN values
|
64 |
+
row_value_str = str(row_value)
|
65 |
+
original_rows_list.append(row_value_str)
|
66 |
+
|
67 |
# Example: Using the preprocessed data with the OpenAI API
|
68 |
+
llm_response = llm.predict(row_value_str + " " + user_input)
|
69 |
responses_list.append(llm_response)
|
70 |
|
71 |
# Introduce a delay of 1 second between API calls to reduce the rate of requests
|
|
|
77 |
"Responses": responses_list
|
78 |
})
|
79 |
|
80 |
+
# Add bold formatting to the "Responses" column
|
81 |
+
response_df["Responses"] = response_df["Responses"].apply(lambda x: f"**{x}**")
|
82 |
+
|
83 |
# Offer the option to download the responses as a CSV file
|
84 |
if st.button("Download Responses as CSV"):
|
85 |
with BytesIO() as output_file:
|
86 |
response_df.to_csv(output_file, index=False)
|
87 |
+
|
88 |
st.download_button(
|
89 |
label="Download CSV",
|
90 |
data=output_file.getvalue(),
|
|
|
93 |
)
|
94 |
|
95 |
if __name__ == "__main__":
|
96 |
+
main()
|