Spaces:
Running
on
Zero
Running
on
Zero
Utilize HF's "balanced" device_map + dynamically pair diffusion components to relevant execution cores
Browse filesWhen using ZeroGPU, pytorch throws exception that actually stems from OOM.
By utilizing balanced mode + explicitly pairing diffusion components, we avoid that OOM.
Distribution approach (i.e): Text encoder on GPU 1 ~16.6GB, Everything else on GPU 2 (cuda:2) - ~44.5GB including: Controlnet (~4.23GB), VAE (~254MB), Transformer (~40GB).
This keeps the overall memory usage efficiently split across the GPUs while ensuring all components that need to interact directly are on the same device.
app.py
CHANGED
@@ -71,12 +71,39 @@ def use_output_as_input(output_image):
|
|
71 |
base_model = "Qwen/Qwen-Image"
|
72 |
controlnet_model = "InstantX/Qwen-Image-ControlNet-Inpainting"
|
73 |
|
74 |
-
|
75 |
-
|
76 |
pipe = QwenImageControlNetInpaintPipeline.from_pretrained(
|
77 |
-
base_model,
|
|
|
|
|
|
|
78 |
)
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
@spaces.GPU(duration=150)
|
@@ -93,7 +120,7 @@ def infer(edit_images,
|
|
93 |
|
94 |
image = edit_images["background"]
|
95 |
mask = edit_images["layers"][0]
|
96 |
-
|
97 |
if randomize_seed:
|
98 |
seed = random.randint(0, MAX_SEED)
|
99 |
|
@@ -113,7 +140,7 @@ def infer(edit_images,
|
|
113 |
width=image.size[0],
|
114 |
height=image.size[1],
|
115 |
true_cfg_scale=true_cfg_scale,
|
116 |
-
generator=
|
117 |
).images[0]
|
118 |
|
119 |
return [image, result_image], seed
|
@@ -140,7 +167,7 @@ css = """
|
|
140 |
|
141 |
|
142 |
with gr.Blocks(css=css, theme=gr.themes.Citrus()) as demo:
|
143 |
-
gr.HTML("<h1 style='text-align: center'>Qwen-Image
|
144 |
gr.Markdown(
|
145 |
"Inpaint images with [InstantX/Qwen-Image-ControlNet-Inpainting](https://huggingface.co/InstantX/Qwen-Image-ControlNet-Inpainting)"
|
146 |
)
|
|
|
71 |
base_model = "Qwen/Qwen-Image"
|
72 |
controlnet_model = "InstantX/Qwen-Image-ControlNet-Inpainting"
|
73 |
|
74 |
+
# First create the pipeline with device_map="balanced"
|
|
|
75 |
pipe = QwenImageControlNetInpaintPipeline.from_pretrained(
|
76 |
+
base_model,
|
77 |
+
controlnet=None, # We'll add the controlnet later
|
78 |
+
torch_dtype=torch.bfloat16,
|
79 |
+
device_map="balanced"
|
80 |
)
|
81 |
+
|
82 |
+
pipe_device_map = pipe.hf_device_map
|
83 |
+
print("Initial device map:", pipe_device_map)
|
84 |
+
# Expected output: {'transformer': 0, 'text_encoder': 1, 'vae': 2}
|
85 |
+
|
86 |
+
# Move the controlnet to the same device as the VAE (cuda:2)
|
87 |
+
vae_device = pipe_device_map['vae']
|
88 |
+
vae_device = f"cuda:{vae_device}" # This is where the VAE is in the balanced config
|
89 |
+
controlnet = QwenImageControlNetModel.from_pretrained(
|
90 |
+
controlnet_model,
|
91 |
+
torch_dtype=torch.bfloat16
|
92 |
+
).to(vae_device)
|
93 |
+
|
94 |
+
# Attach the controlnet to the pipeline
|
95 |
+
pipe.controlnet = controlnet
|
96 |
+
|
97 |
+
pipe.enable_vae_slicing()
|
98 |
+
pipe.enable_vae_tiling()
|
99 |
+
|
100 |
+
print("Controlnet device:", next(pipe.controlnet.parameters()).device)
|
101 |
+
print("VAE device:", next(pipe.vae.parameters()).device)
|
102 |
+
|
103 |
+
|
104 |
+
# Create a helper function to get a generator on the correct device
|
105 |
+
def get_generator(seed):
|
106 |
+
return torch.Generator(device=vae_device).manual_seed(seed)
|
107 |
|
108 |
|
109 |
@spaces.GPU(duration=150)
|
|
|
120 |
|
121 |
image = edit_images["background"]
|
122 |
mask = edit_images["layers"][0]
|
123 |
+
|
124 |
if randomize_seed:
|
125 |
seed = random.randint(0, MAX_SEED)
|
126 |
|
|
|
140 |
width=image.size[0],
|
141 |
height=image.size[1],
|
142 |
true_cfg_scale=true_cfg_scale,
|
143 |
+
generator=get_generator(seed)
|
144 |
).images[0]
|
145 |
|
146 |
return [image, result_image], seed
|
|
|
167 |
|
168 |
|
169 |
with gr.Blocks(css=css, theme=gr.themes.Citrus()) as demo:
|
170 |
+
gr.HTML("<h1 style='text-align: center'>Qwen-Image + InstantX Inpainting ControlNet</style>")
|
171 |
gr.Markdown(
|
172 |
"Inpaint images with [InstantX/Qwen-Image-ControlNet-Inpainting](https://huggingface.co/InstantX/Qwen-Image-ControlNet-Inpainting)"
|
173 |
)
|