Spaces:
Runtime error
Runtime error
File size: 4,358 Bytes
016532e 71d12ce caef638 71d12ce cf3fc03 71d12ce 016532e 6b3c1e9 016532e 71d12ce b03eeaf 71d12ce cf75aba 71d12ce eee51b6 71d12ce e245f8d 71d12ce 2acae5e 71d12ce 2acae5e 71d12ce 2acae5e 71d12ce f107a56 1cd1544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiStableDiffusionLDM3DPipeline
import gradio as gr
import torch
from PIL import Image
import base64
from io import BytesIO
from tempfile import NamedTemporaryFile
from pathlib import Path
Path("tmp").mkdir(exist_ok=True)
device = "hpu"
print(f"Device is {device}")
model_name = "Intel/ldm3d-pano"
scheduler = GaudiDDIMScheduler.from_pretrained(model_name, subfolder="scheduler")
pipe = GaudiStableDiffusionLDM3DPipeline.from_pretrained( model_name,
scheduler=scheduler,
use_habana=True,
use_hpu_graphs=True,
gaudi_config="Habana/stable-diffusion")
pipe.to(device)
def get_iframe(rgb_path: str, depth_path: str, viewer_mode: str = "6DOF"):
# buffered = BytesIO()
# rgb.convert("RGB").save(buffered, format="JPEG")
# rgb_base64 = base64.b64encode(buffered.getvalue())
# buffered = BytesIO()
# depth.convert("RGB").save(buffered, format="JPEG")
# depth_base64 = base64.b64encode(buffered.getvalue())
# rgb_base64 = "data:image/jpeg;base64," + rgb_base64.decode("utf-8")
# depth_base64 = "data:image/jpeg;base64," + depth_base64.decode("utf-8")
rgb_base64 = f"/file={rgb_path}"
depth_base64 = f"/file={depth_path}"
if viewer_mode == "6DOF":
return f"""<iframe src="file=static/three6dof.html" width="100%" height="500px" data-rgb="{rgb_base64}" data-depth="{depth_base64}"></iframe>"""
else:
return f"""<iframe src="file=static/depthmap.html" width="100%" height="500px" data-rgb="{rgb_base64}" data-depth="{depth_base64}"></iframe>"""
def predict(
prompt: str,
negative_prompt: str,
guidance_scale: float = 5.0,
seed: int = 0,
randomize_seed: bool = True,
):
generator = torch.Generator() if randomize_seed else torch.manual_seed(seed)
output = pipe(
prompt,
width=1024,
height=512,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
generator=generator,
num_inference_steps=50,
) # type: ignore
rgb_image, depth_image = output.rgb[0], output.depth[0] # type: ignore
with NamedTemporaryFile(suffix=".png", delete=False, dir="tmp") as rgb_file:
rgb_image.save(rgb_file.name)
rgb_image = rgb_file.name
with NamedTemporaryFile(suffix=".png", delete=False, dir="tmp") as depth_file:
depth_image.save(depth_file.name)
depth_image = depth_file.name
iframe = get_iframe(rgb_image, depth_image)
return rgb_image, depth_image, generator.seed(), iframe
with gr.Blocks() as block:
gr.Markdown(
"""
## LDM3d Demo
[Model card](https://huggingface.co/Intel/ldm3d-pano)
[Diffusers docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/ldm3d_diffusion)
For better results, specify "360 view of" or "panoramic view of" in the prompt
"""
)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
guidance_scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=10, step=0.1, value=5.0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
seed = gr.Slider(label="Seed", minimum=0,
maximum=2**64 - 1, step=1)
generated_seed = gr.Number(label="Generated Seed")
markdown = gr.Markdown(label="Output Box")
with gr.Row():
new_btn = gr.Button("New Image")
with gr.Column(scale=2):
html = gr.HTML(height='50%')
with gr.Row():
rgb = gr.Image(label="RGB Image", type="filepath")
depth = gr.Image(label="Depth Image", type="filepath")
gr.Examples(
examples=[
["360 view of a large bedroom", "", 7.0, 42, False]],
inputs=[prompt, negative_prompt, guidance_scale, seed, randomize_seed],
outputs=[rgb, depth, generated_seed, html],
fn=predict,
cache_examples=True)
new_btn.click(
fn=predict,
inputs=[prompt, negative_prompt, guidance_scale, seed, randomize_seed],
outputs=[rgb, depth, generated_seed, html],
)
block.launch() |