File size: 12,207 Bytes
5a5a36e
 
 
 
d56aebd
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9cb207
 
5a5a36e
 
 
 
 
 
a623a77
5a5a36e
 
 
 
a623a77
 
5a5a36e
 
 
 
 
 
 
 
653f44e
b10d6d4
5a5a36e
dca5dbd
6b27724
 
dca5dbd
 
 
 
 
 
 
a16a56e
5a5a36e
 
 
 
 
 
 
 
1aaa48e
5a5a36e
553dd93
607469c
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b778b1a
 
 
 
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a16a56e
 
b9cb207
a623a77
 
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
a16a56e
5a5a36e
 
 
 
61c1bf5
 
 
5a5a36e
 
d56aebd
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a623a77
5a5a36e
 
 
 
 
c2b975e
 
b9cb207
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd435a
5a5a36e
 
 
653f44e
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b10d6d4
5a5a36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import glob
import json
import math
import os
import traceback
from dataclasses import dataclass

import dateutil
import numpy as np

from huggingface_hub import ModelCard

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, QuantType, WeightDtype, ComputeDtype 


@dataclass
class EvalResult:
    # Also see src.display.utils.AutoEvalColumn for what will be displayed.
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    revision: str # commit hash, "" if main
    results: dict
    quant_type: QuantType = QuantType.Unknown
    precision: Precision = Precision.Unknown
    weight_dtype: WeightDtype = WeightDtype.Unknown
    compute_dtype: ComputeDtype = ComputeDtype.Unknown
    double_quant: bool = False 
    model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original # Original or Adapter
    architecture: str = "Unknown" # From config file
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    model_size: int = 0
    group_size: int = -1
    date: str = "" # submission date of request file
    still_on_hub: bool = True
    is_merge: bool = False
    flagged: bool = False
    status: str = "Finished"
    tags: list = None
    result_file: str = ""

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""

        result_file = "/".join(json_filepath.split("/")[2:])
        with open(json_filepath) as fp:
            data = json.load(fp)

        # We manage the legacy config format
        config = data.get("config_general")

        # Precision
        precision = Precision.from_str(config.get("precision", "4bit"))
        quant_type = QuantType.from_str(str(config.get("quant_type", "GPTQ")))
        weight_dtype = WeightDtype.from_str(data["task_info"].get("weight_dtype", "int4"))
        compute_dtype = ComputeDtype.from_str(data["task_info"].get("compute_dtype", "bfloat16"))
        # double_quant = data["quantization_config"].get("bnb_4bit_use_double_quant", False)
        model_params = round(float(config["model_params"]), 2)
        model_size = round(float(config["model_size"]), 2)
        # group_size = data["quantization_config"].get("group_size", -1)
        if data.get("quantization_config", None):
            double_quant = data["quantization_config"].get("bnb_4bit_use_double_quant", False)
            group_size = data["quantization_config"].get("group_size", -1)
        else:
            double_quant = False
            group_size = -1

        local = config.get("local", False)
        if not local:
            local = data["task_info"].get("local", False)

        # Get model and org
        org_and_model = config.get("model_name")
        org_and_model = org_and_model.split("/", 1)

        if local and org_and_model[0] != "Intel":
            org_and_model = config.get("model_name").split("/")
            # temporary "local"
            org_and_model = ["local", org_and_model[-1]]
            quant_type = QuantType.autoround

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            task = task.value
            if task.benchmark == "mmlu":
                accs = np.array([data["results"]["harness|mmlu|0"][task.metric]])
            else:
                accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            mean_acc = round(mean_acc, 2)
            results[task.benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            quant_type=quant_type,
            weight_dtype=weight_dtype,
            compute_dtype=compute_dtype,
            double_quant=double_quant,
            revision=config.get("model_sha", "main"),
            num_params=model_params,
            model_size=model_size,
            group_size=group_size,
            result_file=result_file
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model,
                self.quant_type.value.name, self.precision.value.name,
                self.weight_dtype.value.name, self.compute_dtype.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            # self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
            # self.precision = WeightType[request.get("weight_type", "Original")]
            # self.num_params = request.get("model_size", 0) / 2 # need fix
            self.date = request.get("submitted_time", "")
            self.architecture = request.get("architectures", "Unknown")
            self.status = request.get("status", "Failed")
        except Exception as e:
            print(requests_path, self.full_model,
                self.quant_type.value.name, self.precision.value.name,
                self.weight_dtype.value.name, self.compute_dtype.value.name)
            self.status = "Failed"
            print(f"Could not find request file for {self.org}/{self.model}")
            print(traceback.format_exc())

    def update_with_dynamic_file_dict(self, file_dict):
        self.license = file_dict.get("license", "?")
        self.likes = file_dict.get("likes", 0)
        self.still_on_hub = file_dict["still_on_hub"]
        self.tags = file_dict.get("tags", [])
        self.flagged = any("flagged" in tag for tag in self.tags)
        

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)

        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.quant_type.name: self.quant_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.quant_type.value.symbol,
            AutoEvalColumn.weight_dtype.name: self.weight_dtype.value.name,
            AutoEvalColumn.compute_dtype.name: self.compute_dtype.value.name,
            AutoEvalColumn.double_quant.name: self.double_quant,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.result_file),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.model_size.name: self.model_size,
            AutoEvalColumn.group_size.name: self.group_size,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
            AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
            AutoEvalColumn.flagged.name: self.flagged
        }

        for task in Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict


def get_request_file_for_model(requests_path, model_name,
        quant_type, precision, weight_dtype, compute_dtype):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    # {model_path}_eval_request_{private}_{quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            print(model_name, req_content["precision"], precision.split(".")[-1], str(req_content["quant_type"]), quant_type, req_content["weight_dtype"], weight_dtype.split(".")[-1],req_content["compute_dtype"], compute_dtype.split(".")[-1] )
            if (
                req_content["status"] in ["Finished"]
                and req_content["precision"] == precision.split(".")[-1]
                and str(req_content["quant_type"]) == quant_type
                and req_content["weight_dtype"] == weight_dtype.split(".")[-1]
                and req_content["compute_dtype"] == compute_dtype.split(".")[-1]
            ):
                request_file = tmp_request_file
            elif (
                req_content["status"] in ["Finished"]
                and req_content["precision"] == precision.split(".")[-1]
                and quant_type == "AutoRound"
                and req_content["weight_dtype"] == weight_dtype.split(".")[-1]
                and req_content["compute_dtype"] == compute_dtype.split(".")[-1]
            ):
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    with open(dynamic_path) as f:
        dynamic_data = json.load(f)

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        eval_result.update_with_request_file(requests_path)
        if eval_result.full_model in dynamic_data:
            # eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
            # Hardcoding because of gating problem
            if "meta-llama" in eval_result.full_model: 
                eval_result.still_on_hub = True

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result


    results = []
    for v in eval_results.values():
        try:
            if v.status == "Finished":
                v.to_dict() # we test if the dict version is complete
                results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results