File size: 12,207 Bytes
5a5a36e d56aebd 5a5a36e b9cb207 5a5a36e a623a77 5a5a36e a623a77 5a5a36e 653f44e b10d6d4 5a5a36e dca5dbd 6b27724 dca5dbd a16a56e 5a5a36e 1aaa48e 5a5a36e 553dd93 607469c 5a5a36e b778b1a 5a5a36e a16a56e b9cb207 a623a77 5a5a36e a16a56e 5a5a36e 61c1bf5 5a5a36e d56aebd 5a5a36e a623a77 5a5a36e c2b975e b9cb207 5a5a36e 2bd435a 5a5a36e 653f44e 5a5a36e b10d6d4 5a5a36e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import glob
import json
import math
import os
import traceback
from dataclasses import dataclass
import dateutil
import numpy as np
from huggingface_hub import ModelCard
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, QuantType, WeightDtype, ComputeDtype
@dataclass
class EvalResult:
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
quant_type: QuantType = QuantType.Unknown
precision: Precision = Precision.Unknown
weight_dtype: WeightDtype = WeightDtype.Unknown
compute_dtype: ComputeDtype = ComputeDtype.Unknown
double_quant: bool = False
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown" # From config file
license: str = "?"
likes: int = 0
num_params: int = 0
model_size: int = 0
group_size: int = -1
date: str = "" # submission date of request file
still_on_hub: bool = True
is_merge: bool = False
flagged: bool = False
status: str = "Finished"
tags: list = None
result_file: str = ""
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
result_file = "/".join(json_filepath.split("/")[2:])
with open(json_filepath) as fp:
data = json.load(fp)
# We manage the legacy config format
config = data.get("config_general")
# Precision
precision = Precision.from_str(config.get("precision", "4bit"))
quant_type = QuantType.from_str(str(config.get("quant_type", "GPTQ")))
weight_dtype = WeightDtype.from_str(data["task_info"].get("weight_dtype", "int4"))
compute_dtype = ComputeDtype.from_str(data["task_info"].get("compute_dtype", "bfloat16"))
# double_quant = data["quantization_config"].get("bnb_4bit_use_double_quant", False)
model_params = round(float(config["model_params"]), 2)
model_size = round(float(config["model_size"]), 2)
# group_size = data["quantization_config"].get("group_size", -1)
if data.get("quantization_config", None):
double_quant = data["quantization_config"].get("bnb_4bit_use_double_quant", False)
group_size = data["quantization_config"].get("group_size", -1)
else:
double_quant = False
group_size = -1
local = config.get("local", False)
if not local:
local = data["task_info"].get("local", False)
# Get model and org
org_and_model = config.get("model_name")
org_and_model = org_and_model.split("/", 1)
if local and org_and_model[0] != "Intel":
org_and_model = config.get("model_name").split("/")
# temporary "local"
org_and_model = ["local", org_and_model[-1]]
quant_type = QuantType.autoround
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
if task.benchmark == "mmlu":
accs = np.array([data["results"]["harness|mmlu|0"][task.metric]])
else:
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
mean_acc = round(mean_acc, 2)
results[task.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
quant_type=quant_type,
weight_dtype=weight_dtype,
compute_dtype=compute_dtype,
double_quant=double_quant,
revision=config.get("model_sha", "main"),
num_params=model_params,
model_size=model_size,
group_size=group_size,
result_file=result_file
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model,
self.quant_type.value.name, self.precision.value.name,
self.weight_dtype.value.name, self.compute_dtype.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
# self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
# self.precision = WeightType[request.get("weight_type", "Original")]
# self.num_params = request.get("model_size", 0) / 2 # need fix
self.date = request.get("submitted_time", "")
self.architecture = request.get("architectures", "Unknown")
self.status = request.get("status", "Failed")
except Exception as e:
print(requests_path, self.full_model,
self.quant_type.value.name, self.precision.value.name,
self.weight_dtype.value.name, self.compute_dtype.value.name)
self.status = "Failed"
print(f"Could not find request file for {self.org}/{self.model}")
print(traceback.format_exc())
def update_with_dynamic_file_dict(self, file_dict):
self.license = file_dict.get("license", "?")
self.likes = file_dict.get("likes", 0)
self.still_on_hub = file_dict["still_on_hub"]
self.tags = file_dict.get("tags", [])
self.flagged = any("flagged" in tag for tag in self.tags)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.quant_type.name: self.quant_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.quant_type.value.symbol,
AutoEvalColumn.weight_dtype.name: self.weight_dtype.value.name,
AutoEvalColumn.compute_dtype.name: self.compute_dtype.value.name,
AutoEvalColumn.double_quant.name: self.double_quant,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.result_file),
AutoEvalColumn.dummy.name: self.full_model,
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.model_size.name: self.model_size,
AutoEvalColumn.group_size.name: self.group_size,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
AutoEvalColumn.flagged.name: self.flagged
}
for task in Tasks:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name,
quant_type, precision, weight_dtype, compute_dtype):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
# {model_path}_eval_request_{private}_{quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
print(model_name, req_content["precision"], precision.split(".")[-1], str(req_content["quant_type"]), quant_type, req_content["weight_dtype"], weight_dtype.split(".")[-1],req_content["compute_dtype"], compute_dtype.split(".")[-1] )
if (
req_content["status"] in ["Finished"]
and req_content["precision"] == precision.split(".")[-1]
and str(req_content["quant_type"]) == quant_type
and req_content["weight_dtype"] == weight_dtype.split(".")[-1]
and req_content["compute_dtype"] == compute_dtype.split(".")[-1]
):
request_file = tmp_request_file
elif (
req_content["status"] in ["Finished"]
and req_content["precision"] == precision.split(".")[-1]
and quant_type == "AutoRound"
and req_content["weight_dtype"] == weight_dtype.split(".")[-1]
and req_content["compute_dtype"] == compute_dtype.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
with open(dynamic_path) as f:
dynamic_data = json.load(f)
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
if eval_result.full_model in dynamic_data:
# eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
# Hardcoding because of gating problem
if "meta-llama" in eval_result.full_model:
eval_result.still_on_hub = True
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
if v.status == "Finished":
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results
|