update scattor and modal
Browse files
app.py
CHANGED
@@ -45,6 +45,10 @@ from src.tools.plots import (
|
|
45 |
create_plot_df,
|
46 |
create_scores_df,
|
47 |
)
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
50 |
#enable_space_ci()
|
@@ -278,6 +282,35 @@ def filter_models(
|
|
278 |
|
279 |
return filtered_df
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
leaderboard_df = filter_models(
|
282 |
df=leaderboard_df,
|
283 |
type_query=[t.to_str(" : ") for t in QuantType],
|
@@ -377,6 +410,12 @@ with demo:
|
|
377 |
#column_widths=["2%", "33%"]
|
378 |
)
|
379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
381 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
382 |
value=original_df[COLS],
|
@@ -448,7 +487,11 @@ with demo:
|
|
448 |
[filter_columns_type],
|
449 |
[filter_columns_weightDtype]
|
450 |
)
|
|
|
451 |
|
|
|
|
|
|
|
452 |
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_parameters, hide_models, filter_columns_computeDtype, filter_columns_weightDtype, filter_columns_doubleQuant, filter_columns_groupDtype]:
|
453 |
selector.change(
|
454 |
update_table,
|
|
|
45 |
create_plot_df,
|
46 |
create_scores_df,
|
47 |
)
|
48 |
+
from gradio_modal import Modal
|
49 |
+
import plotly.graph_objects as go
|
50 |
+
|
51 |
+
selected_indices = []
|
52 |
|
53 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
54 |
#enable_space_ci()
|
|
|
282 |
|
283 |
return filtered_df
|
284 |
|
285 |
+
def select(df, data: gr.SelectData):
|
286 |
+
global selected_indices
|
287 |
+
selected_index = data.index[0]
|
288 |
+
|
289 |
+
if selected_index in selected_indices:
|
290 |
+
selected_indices.remove(selected_index)
|
291 |
+
else:
|
292 |
+
selected_indices.append(selected_index)
|
293 |
+
|
294 |
+
fig = go.Figure()
|
295 |
+
for i in selected_indices:
|
296 |
+
row = df.iloc[i, :]
|
297 |
+
fig.add_trace(go.Scatterpolar(
|
298 |
+
r=[row['Average ⬆️'], row['ARC-c'], row['ARC-e'], row['Boolq'], row['HellaSwag'], row['Lambada'], row['MMLU'], row['Openbookqa'], row['Piqa'], row['Truthfulqa'], row['Winogrande']],
|
299 |
+
theta=['Average ⬆️', 'ARC-c', 'ARC-e', 'Boolq', 'HellaSwag', 'Lambada', 'MMLU', 'Openbookqa', 'Piqa', 'Truthfulqa', 'Winogrande',],
|
300 |
+
fill='toself',
|
301 |
+
name=str(row['Model'])
|
302 |
+
))
|
303 |
+
fig.update_layout(
|
304 |
+
polar=dict(
|
305 |
+
radialaxis=dict(
|
306 |
+
visible=True,
|
307 |
+
)),
|
308 |
+
showlegend=True
|
309 |
+
)
|
310 |
+
|
311 |
+
|
312 |
+
return fig
|
313 |
+
|
314 |
leaderboard_df = filter_models(
|
315 |
df=leaderboard_df,
|
316 |
type_query=[t.to_str(" : ") for t in QuantType],
|
|
|
410 |
#column_widths=["2%", "33%"]
|
411 |
)
|
412 |
|
413 |
+
with Modal(visible=False) as modal:
|
414 |
+
map = gr.Plot()
|
415 |
+
|
416 |
+
leaderboard_table.select(select, leaderboard_table, map)
|
417 |
+
leaderboard_table.select(lambda: Modal(visible=True), None, modal)
|
418 |
+
|
419 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
420 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
421 |
value=original_df[COLS],
|
|
|
487 |
[filter_columns_type],
|
488 |
[filter_columns_weightDtype]
|
489 |
)
|
490 |
+
|
491 |
|
492 |
+
|
493 |
+
|
494 |
+
|
495 |
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_parameters, hide_models, filter_columns_computeDtype, filter_columns_weightDtype, filter_columns_doubleQuant, filter_columns_groupDtype]:
|
496 |
selector.change(
|
497 |
update_table,
|