from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] @dataclass class Task: benchmark: str metric: str col_name: str class Tasks(Enum): arc = Task("arc:challenge", "acc,none", "ARC-c") arc_easy = Task("arc:easy", "acc,none", "ARC-e") boolq = Task("boolq", "acc,none", "Boolq") hellaswag = Task("hellaswag", "acc,none", "HellaSwag") lambada_openai = Task("lambada:openai", "acc,none", "Lambada") mmlu = Task("mmlu", "acc,none", "MMLU") openbookqa = Task("openbookqa", "acc,none", "Openbookqa") piqa = Task("piqa", "acc,none", "Piqa") # truthfulqa:mc1 / truthfulqa:mc2 -- ? truthfulqa_mc = Task("truthfulqa:mc1", "acc,none", "Truthfulqa") # arc:challenge ? # arc_challenge = Task("arc:challenge", "acc_norm,none", "Arc challenge") # truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA") winogrande = Task("winogrande", "acc,none", "Winogrande") # gsm8k = Task("gsm8k", "acc", "GSM8K") # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False dummy: bool = False auto_eval_column_dict = [] # Init auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) #Scores auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) for task in Tasks: auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)]) auto_eval_column_dict.append(["model_size", ColumnContent, ColumnContent("#Size (G)", "number", True)]) # Dummy column for the search bar (hidden by the custom CSS) auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) # Model information auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, hidden=True)]) auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) auto_eval_column_dict.append(["quant_type", ColumnContent, ColumnContent("Quant type", "str", False)]) auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) auto_eval_column_dict.append(["weight_dtype", ColumnContent, ColumnContent("Weight dtype", "str", False)]) auto_eval_column_dict.append(["compute_dtype", ColumnContent, ColumnContent("Compute dtype", "str", False)]) auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False, hidden=True)]) auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) # auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]) auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) auto_eval_column_dict.append(["double_quant", ColumnContent, ColumnContent("Double Quant", "bool", False)]) auto_eval_column_dict.append(["group_size", ColumnContent, ColumnContent("Group Size", "bool", False)]) # We use make dataclass to dynamically fill the scores from Tasks # auto_eval_column_dict.sort(key=lambda x: x[0]) sorted_columns = sorted(auto_eval_column_dict[3:], key=lambda x: x[0]) sorted_auto_eval_column_dict = auto_eval_column_dict[:3] + sorted_columns AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) private = ColumnContent("private", "bool", True) precision = ColumnContent("precision", "str", True) weight_type = ColumnContent("weight_type", "str", "Original") status = ColumnContent("status", "str", True) baseline_row = { AutoEvalColumn.model.name: "
Baseline
", AutoEvalColumn.revision.name: "N/A", AutoEvalColumn.precision.name: None, AutoEvalColumn.merged.name: False, AutoEvalColumn.average.name: 31.0, AutoEvalColumn.arc.name: 25.0, # AutoEvalColumn.hellaswag.name: 25.0, # AutoEvalColumn.truthfulqa.name: 25.0, AutoEvalColumn.winogrande.name: 50.0, # AutoEvalColumn.gsm8k.name: 0.21, AutoEvalColumn.dummy.name: "baseline", AutoEvalColumn.model_type.name: "", AutoEvalColumn.flagged.name: False, # low-bite new params AutoEvalColumn.mmlu.name: 25.0, AutoEvalColumn.lambada_openai.name: 25.0, AutoEvalColumn.hellaswag.name: 25.0, AutoEvalColumn.piqa.name: 25.0, AutoEvalColumn.truthfulqa_mc.name: 25.0, AutoEvalColumn.openbookqa.name: 25.0, AutoEvalColumn.boolq.name: True, AutoEvalColumn.arc_easy.name: 25.0, AutoEvalColumn.double_quant.name: False, } # Average ⬆️ human baseline is 0.897 (source: averaging human baselines below) # ARC human baseline is 0.80 (source: https://lab42.global/arc/) # HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide) # MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ) # TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf) # Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public # GSM8K: paper # Define the human baselines human_baseline_row = { AutoEvalColumn.model.name: "Human performance
", AutoEvalColumn.revision.name: "N/A", AutoEvalColumn.precision.name: None, AutoEvalColumn.average.name: 92.75, AutoEvalColumn.merged.name: False, AutoEvalColumn.arc.name: 80.0, # AutoEvalColumn.hellaswag.name: 95.0, # AutoEvalColumn.mmlu.name: 89.8, # AutoEvalColumn.truthfulqa.name: 94.0, AutoEvalColumn.winogrande.name: 94.0, # AutoEvalColumn.gsm8k.name: 100, AutoEvalColumn.dummy.name: "human_baseline", AutoEvalColumn.model_type.name: "", AutoEvalColumn.flagged.name: False, } @dataclass class ModelDetails: name: str symbol: str = "" # emoji, only for the model type """ class ModelType(Enum): PT = ModelDetails(name="GPTQ", symbol="🟢") CPT = ModelDetails(name="AWQ", symbol="🟩") FT = ModelDetails(name="llama.cpp", symbol="🔷") chat = ModelDetails(name="Bisandbytes", symbol="🔵") merges = ModelDetails(name="AutoRound", symbol="🍒") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔷" in type: return ModelType.FT if "continously pretrained" in type or "🟩" in type: return ModelType.CPT if "pretrained" in type or "🟢" in type: return ModelType.PT if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "🔵"]]): return ModelType.chat if "merge" in type or "🍒" in type: return ModelType.merges return ModelType.Unknown """ class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") CPT = ModelDetails(name="continuously pretrained", symbol="🟩") FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔷") chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="🔵") merges = ModelDetails(name="base merges and moerges", symbol="🍒") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔷" in type: return ModelType.FT if "continously pretrained" in type or "🟩" in type: return ModelType.CPT if "pretrained" in type or "🟢" in type or "quantization" in type: return ModelType.PT if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "🔵"]]): return ModelType.chat if "merge" in type or "🍒" in type: return ModelType.merges return ModelType.Unknown class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class QuantType(Enum): gptq = ModelDetails(name="GPTQ", symbol="🟢") aqlm = ModelDetails(name="AQLM", symbol="⭐") awq = ModelDetails(name="AWQ", symbol="🟩") llama_cpp = ModelDetails(name="llama.cpp", symbol="🔷") bnb = ModelDetails(name="bitsandbytes", symbol="🔵") autoround = ModelDetails(name="AutoRound", symbol="🍒") Unknown = ModelDetails(name="?", symbol="?") QuantType_None = ModelDetails(name="None", symbol="✖") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" def from_str(quant_dtype): if quant_dtype in ["GPTQ"]: return QuantType.gptq if quant_dtype in ["AQLM"]: return QuantType.aqlm if quant_dtype in ["AWQ"]: return QuantType.awq if quant_dtype in ["llama.cpp"]: return QuantType.llama_cpp if quant_dtype in ["bitsandbytes"]: return QuantType.bnb if quant_dtype in ["AutoRound"]: return QuantType.autoround if quant_dtype in ["None"]: return QuantType.QuantType_None return QuantType.Unknown class WeightDtype(Enum): all = ModelDetails("All") int2 = ModelDetails("int2") int3 = ModelDetails("int3") int4 = ModelDetails("int4") int8 = ModelDetails("int8") nf4 = ModelDetails("nf4") fp4 = ModelDetails("fp4") f16 = ModelDetails("float16") bf16 = ModelDetails("bfloat16") f32 = ModelDetails("float32") Unknown = ModelDetails("?") def from_str(weight_dtype): if weight_dtype in ["int2"]: return WeightDtype.int2 if weight_dtype in ["int3"]: return WeightDtype.int3 if weight_dtype in ["int4"]: return WeightDtype.int4 if weight_dtype in ["int8"]: return WeightDtype.int8 if weight_dtype in ["nf4"]: return WeightDtype.nf4 if weight_dtype in ["fp4"]: return WeightDtype.fp4 if weight_dtype in ["All"]: return WeightDtype.all if weight_dtype in ["float16"]: return WeightDtype.f16 if weight_dtype in ["bfloat16"]: return WeightDtype.bf16 if weight_dtype in ["float32"]: return WeightDtype.f32 return WeightDtype.Unknown class ComputeDtype(Enum): all = ModelDetails("All") fp16 = ModelDetails("float16") bf16 = ModelDetails("bfloat16") int8 = ModelDetails("int8") fp32 = ModelDetails("float32") Unknown = ModelDetails("?") def from_str(compute_dtype): if compute_dtype in ["bfloat16"]: return ComputeDtype.bf16 if compute_dtype in ["float16"]: return ComputeDtype.fp16 if compute_dtype in ["int8"]: return ComputeDtype.int8 if compute_dtype in ["float32"]: return ComputeDtype.fp32 if compute_dtype in ["All"]: return ComputeDtype.all return ComputeDtype.Unknown class GroupDtype(Enum): group_1 = ModelDetails("-1") group_1024 = ModelDetails("1024") group_256 = ModelDetails("256") group_128 = ModelDetails("128") group_64 = ModelDetails("64") group_32 = ModelDetails("32") group_all = ModelDetails("All") def from_str(compute_dtype): if compute_dtype in ["-1"]: return GroupDtype.group_1 if compute_dtype in ["1024"]: return GroupDtype.group_1024 if compute_dtype in ["256"]: return GroupDtype.group_256 if compute_dtype in ["128"]: return GroupDtype.group_128 if compute_dtype in ["64"]: return GroupDtype.group_64 if compute_dtype in ["32"]: return GroupDtype.group_32 return GroupDtype.group_all class Precision(Enum): # float16 = ModelDetails("float16") # bfloat16 = ModelDetails("bfloat16") qt_2bit = ModelDetails("2bit") qt_3bit = ModelDetails("3bit") qt_4bit = ModelDetails("4bit") qt_8bit = ModelDetails("8bit") qt_16bit = ModelDetails("16bit") qt_32bit = ModelDetails("32bit") Unknown = ModelDetails("?") def from_str(precision): # if precision in ["torch.float16", "float16"]: # return Precision.float16 # if precision in ["torch.bfloat16", "bfloat16"]: # return Precision.bfloat16 if precision in ["2bit"]: return Precision.qt_2bit if precision in ["3bit"]: return Precision.qt_3bit if precision in ["4bit"]: return Precision.qt_4bit if precision in ["8bit"]: return Precision.qt_8bit if precision in ["16bit"]: return Precision.qt_16bit if precision in ["32bit"]: return Precision.qt_32bit return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn)] TYPES = [c.type for c in fields(AutoEvalColumn)] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks] NUMERIC_INTERVALS = { "?": pd.Interval(-1, 0, closed="right"), "~1.5": pd.Interval(0, 2, closed="right"), "~3": pd.Interval(2, 4, closed="right"), "~7": pd.Interval(4, 9, closed="right"), "~13": pd.Interval(9, 20, closed="right"), "~35": pd.Interval(20, 45, closed="right"), "~60": pd.Interval(45, 70, closed="right"), "70+": pd.Interval(70, 10000, closed="right"), } NUMERIC_MODELSIZE = { "?": pd.Interval(-1, 0, closed="right"), "~4": pd.Interval(0, 4, closed="right"), "~8": pd.Interval(4, 8, closed="right"), "~16": pd.Interval(8, 16, closed="right"), "~36": pd.Interval(16, 36, closed="right"), "~48": pd.Interval(36, 48, closed="right"), "~64": pd.Interval(48, 64, closed="right"), ">72": pd.Interval(64, 200, closed="right"), }