eduardo-alvarez
commited on
Commit
•
8d9ad4b
1
Parent(s):
46f3e87
updating deployment tips
Browse files- app.py +3 -3
- info/deployment.py +48 -108
- info/programs.py +0 -6
app.py
CHANGED
@@ -27,9 +27,9 @@ from info.about import(
|
|
27 |
ABOUT)
|
28 |
from src.processing import filter_benchmarks_table
|
29 |
|
30 |
-
inference_endpoint_url = os.environ['inference_endpoint_url']
|
31 |
-
submission_form_endpoint_url = os.environ['submission_form_endpoint_url']
|
32 |
-
inference_concurrency_limit = os.environ['inference_concurrency_limit']
|
33 |
|
34 |
demo = gr.Blocks()
|
35 |
|
|
|
27 |
ABOUT)
|
28 |
from src.processing import filter_benchmarks_table
|
29 |
|
30 |
+
#inference_endpoint_url = os.environ['inference_endpoint_url']
|
31 |
+
#submission_form_endpoint_url = os.environ['submission_form_endpoint_url']
|
32 |
+
#inference_concurrency_limit = os.environ['inference_concurrency_limit']
|
33 |
|
34 |
demo = gr.Blocks()
|
35 |
|
info/deployment.py
CHANGED
@@ -19,31 +19,15 @@ helps you choose the best option for your specific use case. Happy building!
|
|
19 |
<th>Arc GPU</th>
|
20 |
<th>Core Ultra</th>
|
21 |
</tr>
|
22 |
-
<tr>
|
23 |
-
<td>Optimum Habana</td>
|
24 |
-
<td>🚀</td>
|
25 |
-
<td></td>
|
26 |
-
<td></td>
|
27 |
-
<td></td>
|
28 |
-
<td></td>
|
29 |
</tr>
|
30 |
-
|
31 |
-
<td>Intel Extension for PyTorch</td>
|
32 |
-
<td></td>
|
33 |
-
<td>🚀</td>
|
34 |
<td>🚀</td>
|
35 |
<td>🚀</td>
|
36 |
-
<td></td>
|
37 |
-
</tr>
|
38 |
-
<tr>
|
39 |
-
<td>Intel Extension for Transformers</td>
|
40 |
-
<td></td>
|
41 |
<td>🚀</td>
|
42 |
<td>🚀</td>
|
43 |
<td>🚀</td>
|
44 |
-
<td></td>
|
45 |
</tr>
|
46 |
-
|
47 |
<td>OpenVINO</td>
|
48 |
<td></td>
|
49 |
<td>🚀</td>
|
@@ -52,53 +36,20 @@ helps you choose the best option for your specific use case. Happy building!
|
|
52 |
<td>🚀</td>
|
53 |
</tr>
|
54 |
<tr>
|
55 |
-
<td>
|
56 |
-
<td></td>
|
57 |
-
<td>🚀</td>
|
58 |
-
<td>🚀</td>
|
59 |
-
<td>🚀</td>
|
60 |
<td>🚀</td>
|
61 |
-
</tr>
|
62 |
-
<tr>
|
63 |
-
<td>NPU Acceleration Library</td>
|
64 |
-
<td></td>
|
65 |
-
<td></td>
|
66 |
-
<td></td>
|
67 |
-
<td></td>
|
68 |
<td>🚀</td>
|
69 |
-
</tr>
|
70 |
-
</tr>
|
71 |
-
<tr>
|
72 |
-
<td>PyTorch</td>
|
73 |
<td>🚀</td>
|
74 |
<td>🚀</td>
|
75 |
-
<td></td>
|
76 |
-
<td></td>
|
77 |
<td>🚀</td>
|
78 |
</tr>
|
79 |
-
</tr>
|
80 |
-
<tr>
|
81 |
-
<td>Tensorflow</td>
|
82 |
-
<td>🚀</td>
|
83 |
-
<td>🚀</td>
|
84 |
-
<td></td>
|
85 |
-
<td></td>
|
86 |
-
<td>🚀</td>
|
87 |
-
</tr>
|
88 |
</table>
|
89 |
</div>
|
90 |
|
91 |
<hr>
|
92 |
|
93 |
# Intel® Gaudi® Accelerators
|
94 |
-
|
95 |
-
|
96 |
-
Intel Gaudi Software supports PyTorch and DeepSpeed for accelerating LLM training and inference.
|
97 |
-
The Intel Gaudi Software graph compiler will optimize the execution of the operations accumulated in the graph
|
98 |
-
(e.g. operator fusion, data layout management, parallelization, pipelining and memory management,
|
99 |
-
and graph-level optimizations).
|
100 |
-
|
101 |
-
Optimum Habana provides covenient functionality for various tasks. Below is a command line snippet to run inference on Gaudi with meta-llama/Llama-2-7b-hf.
|
102 |
|
103 |
👍[Optimum Habana GitHub](https://github.com/huggingface/optimum-habana)
|
104 |
|
@@ -118,40 +69,7 @@ python run_generation.py \
|
|
118 |
|
119 |
<hr>
|
120 |
|
121 |
-
# Intel® Max Series GPU
|
122 |
-
The Intel® Data Center GPU Max Series is Intel's highest performing, highest density, general-purpose discrete GPU, which packs over 100 billion transistors into one package and contains up to 128 Xe Cores--Intel's foundational GPU compute building block. You can learn more about this GPU [here](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/data-center-gpu/max-series.html).
|
123 |
-
|
124 |
-
### INT4 Inference (GPU) with Intel Extension for Transformers and Intel Extension for Python
|
125 |
-
Intel® Extension for Transformers is an innovative toolkit designed to accelerate GenAI/LLM everywhere with the optimal performance of Transformer-based models on various Intel platforms, including Intel Gaudi2, Intel CPU, and Intel GPU.
|
126 |
-
|
127 |
-
👍 [Intel Extension for Transformers GitHub](https://github.com/intel/intel-extension-for-transformers)
|
128 |
-
|
129 |
-
Intel® Extension for PyTorch* extends PyTorch* with up-to-date features optimizations for an extra performance boost on Intel hardware. Optimizations take advantage of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Vector Neural Network Instructions (VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* xpu device.
|
130 |
-
|
131 |
-
👍 [Intel Extension for PyTorch GitHub](https://github.com/intel/intel-extension-for-pytorch)
|
132 |
-
|
133 |
-
```python
|
134 |
-
import intel_extension_for_pytorch as ipex
|
135 |
-
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
|
136 |
-
from transformers import AutoTokenizer
|
137 |
-
|
138 |
-
device_map = "xpu"
|
139 |
-
model_name ="Qwen/Qwen-7B"
|
140 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
141 |
-
prompt = "When winter becomes spring, the flowers..."
|
142 |
-
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map)
|
143 |
-
|
144 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
145 |
-
device_map=device_map, load_in_4bit=True)
|
146 |
-
|
147 |
-
model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, woq=True, device=device_map)
|
148 |
-
|
149 |
-
output = model.generate(inputs)
|
150 |
-
```
|
151 |
-
<hr>
|
152 |
-
|
153 |
# Intel® Xeon® CPUs
|
154 |
-
The Intel® Xeon® CPUs have the most built-in accelerators of any CPU on the market, including Advanced Matrix Extensions (AMX) to accelerate matrix multiplication in deep learning training and inference. Learn more about the Xeon CPUs [here](https://www.intel.com/content/www/us/en/products/details/processors/xeon.html).
|
155 |
|
156 |
### Optimum Intel and Intel Extension for PyTorch (no quantization)
|
157 |
🤗 Optimum Intel is the interface between the 🤗 Transformers and Diffusers libraries and the different tools and libraries provided by Intel to accelerate end-to-end pipelines on Intel architectures.
|
@@ -205,12 +123,53 @@ outputs = model.generate(inputs)
|
|
205 |
|
206 |
<hr>
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
# Intel® Core Ultra (NPUs and iGPUs)
|
209 |
-
Intel® Core™ Ultra Processors are optimized for premium thin and powerful laptops, featuring 3D performance hybrid architecture, advanced AI capabilities, and available with built-in Intel® Arc™ GPU. Learn more about Intel Core Ultra [here](https://www.intel.com/content/www/us/en/products/details/processors/core-ultra.html). For now, there is support for smaller models like [TinyLama-1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0).
|
210 |
|
211 |
-
###
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
|
|
214 |
👍 [Intel NPU Acceleration Library GitHub](https://github.com/intel/intel-npu-acceleration-library)
|
215 |
|
216 |
```python
|
@@ -244,25 +203,6 @@ print("Run inference")
|
|
244 |
_ = model.generate(**generation_kwargs)
|
245 |
```
|
246 |
|
247 |
-
### OpenVINO Tooling with Optimum Intel
|
248 |
-
OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference.
|
249 |
-
|
250 |
-
👍 [OpenVINO GitHub](https://github.com/openvinotoolkit/openvino)
|
251 |
-
|
252 |
-
```python
|
253 |
-
from optimum.intel import OVModelForCausalLM
|
254 |
-
from transformers import AutoTokenizer, pipeline
|
255 |
-
|
256 |
-
model_id = "helenai/gpt2-ov"
|
257 |
-
model = OVModelForCausalLM.from_pretrained(model_id)
|
258 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
259 |
-
|
260 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
261 |
-
|
262 |
-
pipe("In the spring, beautiful flowers bloom...")
|
263 |
-
|
264 |
-
```
|
265 |
-
|
266 |
<hr>
|
267 |
|
268 |
# Intel® Arc GPUs
|
|
|
19 |
<th>Arc GPU</th>
|
20 |
<th>Core Ultra</th>
|
21 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
</tr>
|
23 |
+
<td>PyTorch</td>
|
|
|
|
|
|
|
24 |
<td>🚀</td>
|
25 |
<td>🚀</td>
|
|
|
|
|
|
|
|
|
|
|
26 |
<td>🚀</td>
|
27 |
<td>🚀</td>
|
28 |
<td>🚀</td>
|
|
|
29 |
</tr>
|
30 |
+
<tr>
|
31 |
<td>OpenVINO</td>
|
32 |
<td></td>
|
33 |
<td>🚀</td>
|
|
|
36 |
<td>🚀</td>
|
37 |
</tr>
|
38 |
<tr>
|
39 |
+
<td>Hugging Face</td>
|
|
|
|
|
|
|
|
|
40 |
<td>🚀</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
<td>🚀</td>
|
|
|
|
|
|
|
|
|
42 |
<td>🚀</td>
|
43 |
<td>🚀</td>
|
|
|
|
|
44 |
<td>🚀</td>
|
45 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
</table>
|
47 |
</div>
|
48 |
|
49 |
<hr>
|
50 |
|
51 |
# Intel® Gaudi® Accelerators
|
52 |
+
Gaudi is Intel's most capable deep learning chip. You can learn about Gaudi [here](https://habana.ai/products/gaudi2/).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
👍[Optimum Habana GitHub](https://github.com/huggingface/optimum-habana)
|
55 |
|
|
|
69 |
|
70 |
<hr>
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
# Intel® Xeon® CPUs
|
|
|
73 |
|
74 |
### Optimum Intel and Intel Extension for PyTorch (no quantization)
|
75 |
🤗 Optimum Intel is the interface between the 🤗 Transformers and Diffusers libraries and the different tools and libraries provided by Intel to accelerate end-to-end pipelines on Intel architectures.
|
|
|
123 |
|
124 |
<hr>
|
125 |
|
126 |
+
# Intel® Max Series GPU
|
127 |
+
|
128 |
+
### INT4 Inference (GPU) with Intel Extension for Transformers and Intel Extension for PyTorch
|
129 |
+
👍 [Intel Extension for PyTorch GitHub](https://github.com/intel/intel-extension-for-pytorch)
|
130 |
+
|
131 |
+
```python
|
132 |
+
import intel_extension_for_pytorch as ipex
|
133 |
+
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
|
134 |
+
from transformers import AutoTokenizer
|
135 |
+
|
136 |
+
device_map = "xpu"
|
137 |
+
model_name ="Qwen/Qwen-7B"
|
138 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
139 |
+
prompt = "When winter becomes spring, the flowers..."
|
140 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map)
|
141 |
+
|
142 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
143 |
+
device_map=device_map, load_in_4bit=True)
|
144 |
+
|
145 |
+
model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, woq=True, device=device_map)
|
146 |
+
|
147 |
+
output = model.generate(inputs)
|
148 |
+
```
|
149 |
+
|
150 |
+
<hr>
|
151 |
+
|
152 |
# Intel® Core Ultra (NPUs and iGPUs)
|
|
|
153 |
|
154 |
+
### OpenVINO Tooling with Optimum Intel
|
155 |
+
|
156 |
+
👍 [OpenVINO GitHub](https://github.com/openvinotoolkit/openvino)
|
157 |
+
|
158 |
+
```python
|
159 |
+
from optimum.intel import OVModelForCausalLM
|
160 |
+
from transformers import AutoTokenizer, pipeline
|
161 |
+
|
162 |
+
model_id = "helenai/gpt2-ov"
|
163 |
+
model = OVModelForCausalLM.from_pretrained(model_id)
|
164 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
165 |
+
|
166 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
167 |
+
|
168 |
+
pipe("In the spring, beautiful flowers bloom...")
|
169 |
+
|
170 |
+
```
|
171 |
|
172 |
+
### Intel® NPU Acceleration Library
|
173 |
👍 [Intel NPU Acceleration Library GitHub](https://github.com/intel/intel-npu-acceleration-library)
|
174 |
|
175 |
```python
|
|
|
203 |
_ = model.generate(**generation_kwargs)
|
204 |
```
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
<hr>
|
207 |
|
208 |
# Intel® Arc GPUs
|
info/programs.py
CHANGED
@@ -41,10 +41,4 @@ others in the community and within Intel
|
|
41 |
|
42 |
Learn more and apply through the program at https://www.intel.com/content/www/us/en/developer/community/innovators/oneapi-innovator.html
|
43 |
|
44 |
-
<hr>
|
45 |
-
|
46 |
-
## Intel DevHub Discord
|
47 |
-
|
48 |
-
Join 5000+ developers on the [Intel DevHub Discord](https://discord.gg/yNYNxK2k) to get support with your submission and talk about everything from GenAI, HPC, to Quantum Computing.
|
49 |
-
|
50 |
"""
|
|
|
41 |
|
42 |
Learn more and apply through the program at https://www.intel.com/content/www/us/en/developer/community/innovators/oneapi-innovator.html
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
"""
|