bconsolvo commited on
Commit
737b989
·
1 Parent(s): 2740af3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -30,7 +30,7 @@ def predict(context,question):
30
  # dense_duration = (dense_end_time - dense_start_time) * 1000
31
  # dense_answer = dense_predictions['answer']
32
 
33
- return sparse_answer,sparse_score,sparse_start,sparse_duration #,dense_answer,dense_duration
34
 
35
  md = """This prediction model is designed to answer a question about a given input text--reading comprehension. The model does not just answer questions in general -- it only works from the text that you provide. However, automated reading comprehension can be a valuable task.
36
 
@@ -61,7 +61,7 @@ iface = gr.Interface(
61
  fn=predict,
62
  inputs=[context,question],
63
  # outputs=[sparse_answer,sparse_duration,dense_answer,dense_duration],
64
- outputs=[sparse_answer,sparse_score,sparse_start,sparse_duration],
65
  examples=[[apple_context,apple_question]],
66
  title = "Question & Answer with Sparse BERT using the SQuAD dataset",
67
  description = md,
 
30
  # dense_duration = (dense_end_time - dense_start_time) * 1000
31
  # dense_answer = dense_predictions['answer']
32
 
33
+ return sparse_answer,sparse_score,sparse_start #,sparse_duration #,dense_answer,dense_duration
34
 
35
  md = """This prediction model is designed to answer a question about a given input text--reading comprehension. The model does not just answer questions in general -- it only works from the text that you provide. However, automated reading comprehension can be a valuable task.
36
 
 
61
  fn=predict,
62
  inputs=[context,question],
63
  # outputs=[sparse_answer,sparse_duration,dense_answer,dense_duration],
64
+ outputs=[sparse_answer,sparse_score,sparse_start],
65
  examples=[[apple_context,apple_question]],
66
  title = "Question & Answer with Sparse BERT using the SQuAD dataset",
67
  description = md,