Ireneo commited on
Commit
53125bb
1 Parent(s): b812a15

changed to use dclm model

Browse files

used apple's new dclm 7b model

Files changed (1) hide show
  1. app.py +16 -20
app.py CHANGED
@@ -1,11 +1,8 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
  def respond(
11
  message,
@@ -25,23 +22,22 @@ def respond(
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
38
 
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
 
 
 
3
 
4
+ tokenizer = AutoTokenizer.from_pretrained("apple/DCLM-Baseline-7B-8k")
5
+ model = AutoModelForCausalLM.from_pretrained("apple/DCLM-Baseline-7B-8k")
6
 
7
  def respond(
8
  message,
 
22
 
23
  messages.append({"role": "user", "content": message})
24
 
25
+ prompt = "".join([f"{'[|Human|] ' if msg['role'] == 'user' else '[|AI|] '}{msg['content']}" for msg in messages])
26
 
27
+ inputs = tokenizer(prompt, return_tensors="pt")
28
+ gen_kwargs = {
29
+ "max_new_tokens": max_tokens,
30
+ "top_p": top_p,
31
+ "temperature": temperature,
32
+ "do_sample": True,
33
+ "repetition_penalty": 1.1
34
+ }
35
+ with torch.no_grad():
36
+ output = model.generate(inputs['input_ids'], **gen_kwargs)
37
+ response = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)[len(prompt):]
38
 
39
+ yield response
 
40
 
 
 
 
41
  demo = gr.ChatInterface(
42
  respond,
43
  additional_inputs=[